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Abstract

We develop and implement a heterogeneous-agents network-based empirical model to analyze

alternative policies during a pandemic outbreak. We combine several data sources, including

information on individuals’ mobility and encounters across metropolitan areas, information on

health records for millions of individuals, and information on the possibility to be productive

while working from home. This rich combination of data sources allows us to build a framework

in which the severity of a disease outbreak varies across locations and industries, and across

individuals who differ by age, occupation, and preexisting health conditions.

We use this framework to analyze the impact of different social distancing policies in the

context of the COVID-19 outbreaks across US metropolitan areas. Our results highlight how

outcomes vary across areas in relation to the underlying heterogeneity in population density,

social network structures, population health, and employment characteristics. We find that

policies by which individuals who can work from home continue to do so, or in which schools and

firms alternate schedules across different groups of students and employees, can be effective

in limiting the health and healthcare costs of the pandemic outbreak while also reducing

employment losses.
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1 Introduction

1.1 Overview

We study the consequences—both for public health and for the economy—of different reopening

policies during the Sars-CoV-2 and COVID-19 pandemic. We consider a model in which

interactions between individuals are governed by a contact network, and individuals belong

to heterogeneous groups based on age, industry, and health status. Our main insight is that

the multi-dimensional consequences of different reopening policies depend crucially on both

the mobility patterns and the socioeconomic and health structures of a given metropolitan

statistical area (MSA).

Using data on individual mobility based on cell-phones location data, complemented with

data from the Framework for Reconstructing Epidemiological Dynamics (FRED) (Grefenstette

et al., 2013), our model captures patterns of movement between different groups. Frequency

of close encounters and the demographics of these encounters constitute a key mechanism that

underlies the spread of an infectious disease, as well as its health and healthcare consequences

(death, hospitalizations, costs). Furthermore, distinct types of economic activity contribute

differently to the distribution of encounters, and may be more or less replaceable with “work

from home”. Our model connects reopening policies with their impact on the distribution

of encounters, as well as on the economic activities in which encounters are made. As such,

it allows us to analyze the health, healthcare, and economic impact of alternative policies

accounting for heterogeneity across individuals in behavior, ability to fight the infection, and

ability to work from home.

We focus on comparing policies that alter mobility and encounters, such as shelter-in-place

orders, school closures, industry closures, rotation of workdays or work hours, and isolation

of frail, high-risk individuals. Our model can also be used to study the importance of policies

and behavioral changes (e.g., wearing masks) that can lower exposure and infection without

reducing encounters. In terms of outcomes, for each sequence of policies, and across different

locations, we measure death, hospitalizations, ICU access, and number of workers who are not

productive because either sick, quarantined, and/or unable to work from home when requested

to shelter-in-place.

1.2 Data

We combine the following primary sources, which we introduce in details in Section 3: (i) syn-

thetic populations at the MSA level from Replica and FRED;1 (ii) electronic medical records

from the COVID-19 Research Database;2 (iii) occupation-level data from the Occupation In-

formation Network (O∗NET), combined with the Occupation Employment Statistics (OES)

1See https://replicahq.com/ and https://fred.publichealth.pitt.edu.
2See https://covid19researchdatabase.org/.
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and the American Community Survey (ACS); (iv) comorbidity and demographic information

from the Medical Expenditure Panel Survey (MEPS).

1.3 Results

Our current findings3 highlight differences between policies across MSAs, as driven by the

composition of the local population, mobility and encounter patterns, and initial infections

in the early months of 2020. A cautious reopening of all activities will lead in higher cases,

with areas where the pandemic outbreak was less severe in early 2020 expected to experience

a faster growth in infections, hospitalizations, ICU admissions, and deaths.

Policies that lower contact between individuals while trying to limit employment losses can

be very effective. When focusing on asking individuals who are able to work from home to do

so, or when alternating school and work schedules to lower density of encounters, we predict

a significant reduction in cases (up to 40% fewer deaths in Chicago, and 17% fewer deaths in

New York), while employment losses are contained relative to a regime in which only essential

activities are open.

1.4 Related Literature

Our work is related to an already expansive economics literature analyzing the COVID-19

pandemic (e.g., Budish, 2020; Baker et al., 2020; Bartik et al., 2020; Mongey et al., 2020;

Dingel and Neiman, 2020; Fernández-Villaverde and Jones, 2020)). In particular, we add to

the burgeoning set of papers that look at the effectiveness of different policies to open the

economy while the crisis is still ongoing (Acemoglu et al., 2020; Baqaee and Farhi, 2019;

Benzell et al., 2020; Farboodi et al., 2020; Glover et al., 2020; Birge et al., 2020; Loertscher

and Muir, 2020; Azzimonti et al., 2020). Stock (2020) provides an overview of this literature.

Much more broadly, our work adds to the vast—and daily growing—interdisciplinary re-

search on the containment measures for the COVID-19 pandemic, building on multi-agent

model-based epidemiological work leveraging data on social contacts (Eubank et al., 2004;

Grefenstette et al., 2013). Related studies in this literature include Eubank et al. (2020);

McCombs and Kadelka (2020); Prem et al. (2020); Moran et al. (2020); Gatto et al. (2020);

Soriano-Paños et al. (2020); Will et al. (2020). New articles appear every day. We contribute

to this work by adding an explicit consideration of the employment effect of different policies,

also accounting for the extent to which individuals are able to work from home.

Further, our model considers explicitly the interlinked relationship between (labor) produc-

tion, health, and healthcare. This follows a classical framework in health economics built upon

Grossman (1972), and more recently adopted in Aizawa and Fang (2020). In modelling how

unhealthy individuals need healthcare, and are not productive, we leverage a novel data source

3The reader can find updated material referring to this project at www.reopenmappingproject.com. As more
data become available, we will refine and update our results.
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providing millions of health records for US individuals. This data is complemented with find-

ings from early studies analyzing the properties of Sars-CoV-2, including Novel et al. (2020);

Mizumoto et al. (2020); Verity et al. (2020); Ruan (2020). New papers become available every

day.

2 Model

2.1 Contact Network

We are interested in the diffusion of an infectious disease in a contact network of individuals.

A contact network is a simple graph, consisting of a set of individuals and set of pairs of

individuals who are connected. Only connected nodes can infect each other. An individual is

characterized not only by her network position, but also her age, industry, and health status.

A social planner can restrict interactions between people and thus impose a different struc-

ture on the contact network. For instance, by closing down schools, a social planner can ensure

that there will be little or no connections left between students. Thus, any policy is effectively

choosing a subset of connections and removing them from the possible networks. The following

stylized example referring to Figure 1 clarifies our approach.

Example 1 Consider the simple stylized network of individuals as shown in Figure 1. Dif-

ferent colors and shapes indicate different types of agents. The green squares are children,

grouped in two schools and the red circles are adults who work in a manufacturing firm. The

three black triangles are adults who work in a tech firm, and the blue diamonds do not work

and are only in contact with their family members.

Figure 1a is the network in normal (non-pandemic) times. In Figure 1b, both schools

and the firm employing red-circle individuals are closed. The network has now two separate

components, with one household being completely isolated in the top-left corner. Figure 1c is

the network structure when the firm employing black-triangle individuals is also closed. The

network is now divided into four small, isolated components.

Our framework allows us to consider policies such as “Individuals should work from home

if possible, and schools are closed.” Figure 1d shows the network structure in this situation.

All individuals in the tech firm (black) can work from home. One of the workers in the manu-

facturing firm (red) can also work from home. The network now has more connections than a

total shut down, so there is more expected infection or death. At the same time, however, our

model will predict a much lower drop in productive employment.

Outcomes generated by a given policy depend crucially on the underlying network structure

and the types of individuals within it. Individuals in our framework are heterogeneous in a

variety of aspects; for instance, their probabilities of symptomatic infection given exposure,

their probabilities of needing ICU treatment, and their probabilities of being able to work

3



Figure 1: Illustrative example of contact network and social distance policies

(a) Normal configuration, two firms, two schools (b) Schools shut down and red firm shuts down

(c) All firms and schools shut down (d) Work from home when possible, no schools

wfh

wfh

wfh

wfh

Note: The figure displays a stylized example of a network of heterogeneous individuals grouped in households, schools,
and firms, under different policies, where 1a is the configuration during normal times. Green squares nodes correspond
to children, red circles correspond to workers of a manufacturing firm, black triangles to workers of a tech firm, and
blue diamonds indicate individuals who are not working. In panel 1b red firm and schools are closed, in panel 1c all
firms and schools are closed, and in panel 1d schools are closed and those who can work from home, while others are
allowed to go to work.

productively from home, and so on. Our framework allows us to study how differences in the

network structure induced by different policies (such as those in the example above) lead to

differences in the rate of infection, the death toll, unemployment, and healthcare spending.

2.2 Empirical Framework

2.2.1 From Contact Network to Type-based Contact Matrices

At the scale of a MSA with millions of people, it is often computationally intractable to

work with the complete contact network when modeling diffusion. As such, we reduce the

dimensionality of our contact networks by constructing contact matrices and estimate their

parameters from the observations of individual-level contacts in the full network.4

4The idea of constructing random networks based on contact matrices is based on the inhomogeneous random
graph model studied in Bollobás et al. (2007).
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For a given MSA m, an individual is described by a type θ ∈ Θ. A type describes demo-

graphic characteristics (e.g., age group), employment characteristics (e.g., industry and ability

to work from home), and health characteristics (e.g., obesity or diabetes). In our analysis, we

include approximately |Θ| = 250 distinct types in each MSA.

Agents of different types and in different locations have different patterns of mobility and

encounters, leading to a different number of contacts in a given period t, measured in days.

The diffusion of a virus is then moderated by the empirical contact matrix Cmt. This is a

square matrix with dimension |Θ|, such that each entry Cmt[θ, θ′] is given by the expected

number of encounters that an agent of type θ has with agents of type θ′:

Cmt[θ, θ′] ≡ E
[
# encounters with type θ′

∣∣θ] (1)

In principle, an encounter is defined as any interaction in which a contagious person may

infect a susceptible person. For instance, behaviors cautioned against by public health officials

during the COVID-19 pandemic, such as sitting within close proximity (e.g. less than 6 feet

apart), or sharing a confined indoor space, constitute encounters.5

2.2.2 The Θ-SEIIIRRD Model

During the epidemic outbreak, an agent of any type can be in one of eight different states,

each denoted by s ∈
{
S,E, IA, INS , IHC , RQ, RNQ, D

}
.6 The different states correspond to

the following:

S: susceptible individuals, who can contract the virus if exposed;

E: exposed individuals, not infectious;

IA: recently infected and infectious individuals;

INS : infectious individuals who will not show symptoms, and will go undetected;7

IHC : detected and/or symptomatic infectious individuals;

RQ: recovered and quarantined individuals;

RNQ: recovered and not quarantined individuals;

D: deceased individuals.

5A detailed description of how encounters are defined in our model is provided in Section 3. The parameter
regulating disease transmission within our model is calibrated with respect to this. A broader definition—which
yields a higher expected number of interactions in which contagion may occur—corresponds to a lower probability
of contagion upon contact.

6See also http://covid-measures.stanford.edu/ for a similar model developed by Erin Mordecai and coauthors
at Stanford University; our model is more general than the one used in Acemoglu et al. (2020), or similar recent and
forthcoming research.

7See Berger et al. (2020) for a discussion on the modelling choices to capture both probabilistic transitions between
infectious and symptomatic, and the duration within each compartment of the epidemic model.
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In a given period, each individual is characterized by a type-state pair (θ, s). We use the

notation Sθmt to indicate the share of individuals of type θ in the susceptible state S in MSA

m in day t, Eθmt to indicate exposed individuals of type θ in MSA m in day t, and similarly

for any other state.

For any type θ, except for types corresponding to active healthcare workers, given the

contact matrix Cmt, the law-of-motion governing the transitions across the SEIIIRRD states

is the following:

Ṡθmt = −βSθmt
∑
θ′∈Θ

Cmt[θ, θ′]× (IAθ′mt + INSθ′mt)/Nθ′mt︸ ︷︷ ︸
infectious not sequestered among θ′

(2)

Ėθmt = +βSθmt
∑
θ′∈Θ

Cmt[θ, θ′]× (IAθ′mt + INSθ′mt)/Nθ′mt︸ ︷︷ ︸
contacts with infectious θ′ for type θ

−εθEθmt (3)

İAθmt = +εθEθmt − τθIAθmt (4)

İHCθmt = +ψτθI
A
θmt − γHCθ IHCθmt − δθIHCθmt (5)

İNSθmt = +(1− ψ)τθI
A
θmt − γNSINSθmt (6)

ṘQθmt = +γHCθ IHCθmt − ηR
Q
θmt (7)

ṘNQθmt = +γNSINSθmt + ηRQθmt (8)

Ḋθmt = +δHCθ IHCθmt. (9)

The parameters governing these transitions between states are the following:

βmt: probability of contagion given contact between an infectious individual and a susceptible

individual in MSA m and day t;

εθ: transition probability (inverse duration) from exposure to infection for type θ individuals;

τθ: transition probability (inverse duration) from infection to either symptomatic (or de-

tected) state or never-symptomatic and undetected state;

ψ: probability that an individual is symptomatic or detected after infection;

γHCθ : inverse duration of the infection for individuals who recover from healthcare;

γNS : inverse duration of the infection for asymptomatic, undetected individuals;

δθ: probability of death after healthcare for infected, symptomatic type θ individuals;

η: inverse duration of quarantine period.
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Important Note on Parameters: The parameters of our model capture a spurious

combination of virological properties, behavioral factors, and modelling choices. We highlight

this explicitly by letting the probability of contagion given contact vary by MSA and day. This

parameter depends on a multitude of factors, which include our exact definition of contact (see

discussion in Section 3), the extent to which individuals adopt protective measures (e.g., use

of masks, gloves, and hand sanitizer or 6 feet distancing), local factors such as weather or

genetic properties of the population. It is essential for the reader to keep this in mind when

interpreting our results: policies, behavior, as well as changes in weather, can alter βmt, thus

affecting the evolution of the infectious disease outbreak. We aim to avoid any confusion when

discussing our findings in Section 4.

Another important parameter that can be affected by policy or behavior is ψ, which regulates

the probability that an individual is symptomatic or detected after infection. The insurgence of

symptoms can be reduced by behavioral factors such as healthy choices that boost the immune

system (e.g., diet, exercise, no smoking nor alcohol). Perhaps more importantly, detection

can increase following widespread testing and contact-tracing policies. Extended access to tests

increases ψ, while also changing the selection of individuals into INS and IHC . This ultimately

affects the evolution of the infectious disease and its consequences.

2.2.3 Accounting for Healthcare: The Θ-SEIIIRRDhc Model

We make two modifications to the model to account for healthcare. First, as we will specify

in Section 3 below, we do not only consider death as a relevant epidemic outcome. We also

keep track of hospitalizations, and ICU usage. Different types will have different propensity of

using healthcare services when infected.

Second, we note that healthcare workers are special types, since they are exposed to ill,

infectious individuals. In many countries, much of the diffusion of Sars-CoV-2 took place in

healthcare facilities. We therefore let HC ⊂ Θ denote healthcare workers; equations (2) and

(3) are replaced by the following:

Ṡθmt = −βSθmt
∑
θ′∈Θ

Cmt[θ, θ′]
(IAθ′mt + INSθ′mt)

Nθ′mt
− 1{θ∈HC}β

HC SθmtI
HC
mt

HCActivemt︸ ︷︷ ︸
exposure in healthcare

(2.hc)

Ėθmt = +βSθmt
∑
θ′∈Θ

Cmt[θ, θ′]
(IAθ′mt + INSθ′mt)

Nθ′mt
− εθEθmt + 1{θ∈HC}β

HC SθmtI
HC
mt

HCActivemt

. (3.hc)

These modified equations capture contagion between infectious individuals and healthcare

workers, where HCActivemt denotes the number of active (non-infectious, alive, healthy) among

HC in m in day t. The probability of contagion is regulated by the parameter βHC <<< βmt,

a natural assumption since healthcare workers wear Personal Protective Equipment (PPE).

7



2.3 Social Distance Policies and Outcomes

We map a social distancing (and/or closure) policy to a sub-graph of the network of contacts

between individuals, and to the corresponding modification of the contract matrix. In other

words, if φ is a policy (e.g., schools are closed), we define Cφmt to be the modified contact matrix

under the set of restrictions implied by this policy (e.g., we exclude all contacts that occur at

schools).8

The set of possible social distancing policies that may have an impact on the economy

and on public health can be quite large. For the sake of exposition, we focus our analysis on

policies that limit the number of contacts between most types of people. Our main analysis

considers policies that have been frequently proposed or carried out in US states and OECD

countries during COVID-19. We will assume that specific policies regarding work and school-

related closures, accompanied by decreases in neighborhood interactions as well. This captures

both voluntary limitations to social interactions, and policies such as park closures and limited

capacity at grocery stores. (See Section 3.4 for a detailed description of the policies that we

consider.)

We do not require policies to be static over the course of a disease outbreak. Rather,

we consider a sequence of daily policies φ = (φ1, φ2, ..., φT ), where φ1 is the policy in day

t = 1, followed by φ2 in day t = 2, and so on and so forth until t = T , the last day of

our analysis. For example, φ could indicate T1 days without any restrictions, followed by T2

days of shelter-in-place with only essential industries and remote work allowed, followed by

a sequence of re-opening authorizations. This has been the modal policy sequence in many

countries affected by the COVID-19 epidemic outbreak.

Figure 2 summarizes our empirical approach and provides an overview of how we combine

data from different sources to analyze and compare the downstream effects of various social

distancing policies. The motivating idea of this approach is that policies that reduce the

number of contacts between individuals may be effective in mitigating the diffusion of an

infectious disease. However, the degree to which a given policy is effective depends on the

particular changes that it induces on the graph of contacts, as well as the parameters that

govern the transmissibility of the disease, the probability of death upon infection, etc.

Our approach captures a number of key outcomes that characterize the effectiveness of

a policy. Under each policy, our Θ-SEIIIRRDhc model allows us to calculate key health

outcomes—such as the number of infections and deaths—as well as healthcare outcomes—

such as hospitalizations, healthcare spending etc. In addition, our model allows us to calculate

key economic outcomes such as the number of individuals who are unable to work (either due

to regulation or due to illness). Implications for downstream variables such as productivity,

financial and firm outcomes etc. could also be assessed by future work.

8One limitation of this approach is that we do not capture re-configurations of activities in response to policies in
this definition, although, in principle, such behavioral responses could be explicitly included in Cφmt. For example, if
all schools are closed but playgrounds are not, we could increase the number of contacts in playgrounds in a principled
fashion.
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Figure 2: Overview of Empirical Approach
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Note: This figure represents an overview of our empirical framework and how it is used to compare alternative policies
along different outcomes. Note that while this figure illustrates how any given policy at a point in time t (e.g., closing
schools on a given day) can be studied in our model, in practice we study the aggregated effects of sequences of different
policies over time (e.g., essential businesses only for 45 days followed by opening of schools). See Section 3.4 for
formal details on the policy sequences we consider.
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3 Data and Estimation

Our empirical framework is informed by four main blocks of data: (i) data on individual

characteristics and physical interactions between them to construct a contact network and

contact matrices, (ii) data on health and healthcare outcomes such as diagnoses, procedures,

hospitalizations, and comorbidity, (iii) data on the ability of individuals to be productive while

working from home.

3.1 Measuring Physical Contacts

3.1.1 Contact Network and Mobility Data

Our primary input to construct the contact matrices that represent physical interactions be-

tween individuals of different types is synthetic population data. A synthetic population is a

1:1 scale representation of the individuals living in a given MSA, where individuals are assigned

covariates in a realistic way in order to match census statistics. Importantly, the synthetic

population captures information on the number of physical interactions between individuals.

Our baseline analysis for Chicago and Sacramento relies on synthetic populations and

physical contacts created by processing cellphone location information from our data partner

Replica,9 a startup spun-out of Alphabet Inc. Given limited coverage for the remaining MSAs,

we supplement this information with data from the publicly-available FRED (Framework for

Reconstructing Epidemiological Dynamics) database.10 This allows us to extend our analysis

to other MSAs, as we showcase in detail for New York City, one of the epicenters of the 2020

pandemic in the US.

Replica Data: Replica, has access to multiple sources of cellphone GPS data sourced

from mobile applications11 as well as data on cell-tower specific locations from a major US

telecom service provider. Using these inputs as well as demographic information from the

Census, Replica has built a proprietary algorithm to create a synthetic population consisting

of individuals who perform activities in the real world. The algorithm preserves privacy (no

synthetic individual exactly matches an individual in the real world), but also produces a

population that closely approximates both age and industry distributions from the Census

ACS, as well as granular ground-truth data on mobility patterns from a variety of different

sources (e.g., State DoT traffic counts).

For every synthetic individual, we observe a home location (and therefore the other individ-

uals they live with). Grade school and college students are assigned a school location based on

their age, home location, and the local schools. Employed residents are assigned a workplace

9Website: https://replicahq.com/; Aude Marzuoli was critical to this cooperation.
10For info visit https://fred.publichealth.pitt.edu/syn_pops.
11Unlike the more aggregate form of similar data used in the literature (e.g., Allcott et al., 2020b), these data rely

on more disaggregated device-level information from multiple different sources.
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based on their industry of employment. Each synthetic resident is then assigned to a specific

set of activities for a typical day, as predicted by the cellphone activity patterns. For each ac-

tivity, we observe the time it began, the time it ended, the specific location or point-of-interest

it took place at (e.g., workplace, school, parks, and grocery stores), and the mode of transport

to the next activity (e.g., car, subway, and bus). Our main dataset is constructed from the

first quarter (Jan-Mar) of 2019 in order to represent the full function of the economy absent

lockdown measures. A detailed description of these data and the methodology for generating

a synthetic city is provided in Appendix A.1.

FRED Data: Since Replica data has limited coverage at this time, we use it for our base-

line analysis in Chicago and Sacramento. For the remaining MSAs for which this information

is not (yet) available, we use the FRED synthetic population data provided by the Pub-

lic Health Dynamics Laboratory at the University of Pittsburgh (Grefenstette et al., 2013).

These populations are the key input to a widely-used open-source agent-based modeling system

developed to simulate infectious disease epidemics in the epidemiological literature. Similar to

Replica, FRED’s synthetic population provides assignments to homes, work/school locations

and neighborhoods along with demographic information such as age. However, a key differ-

ence with Replica is that FRED does not use cellphone location data to create its synthetic

populations and does not provide information on mobility in the real world. See Appendix

A.2 for more information.

3.1.2 Contacts and Contact Matrices

In defining contacts, which in our framework correspond to instances where contagion is pos-

sible, we employ the following criteria. (We take a conservatively broad stance, since our data

does not allow for granularity at the level of where each person sits, and the public health

community has not produced a comprehensive list of activities in which transmission may

occur.)

First, an individual is connected to all others in the same household. Second, they are also

connected to peers at their work and school locations. Since work and school locations can be

quite large and we only want to capture direct contacts (e.g., between classmates, but not the

whole school), we adjust the number of school and work contacts downward using available

information on average school/work sizes and timing of contacts; details in Appendix A.1

and Appendix A.2. Finally, we also want to capture contacts between individuals that occur

outside of the work, school, or home context, such as when they are performing activities like

buying groceries or visiting a park.
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Figure 3: Degree Distributions Across Age/Industries by MSA

(a) Chicago: Age (b) Sacramento: Age

(c) Chicago: Industry (d) Sacramento: Industry

Note: This figure documents the expected number of contacts (degree) for an individual in Chicago and Sacramento as observed in the Replica synthetic
populations. Contacts are split by age and industry of the focal person. The dashed vertical lines represent the average expected degree for a person of
the given type. For example, the purple vertical line in panel (a) is the average degree for people 75+ years old in Chicago. Degree distributions have a
long right tail, especially for workers; we cap at 500 for illustrative purposes, but the average degree is calculated on full distribution. The distribution
for those under 18 is in part driven by our assumptions on class size for students; see Appendix A.1 for more details.



While the home and school/work criteria to define a contact can be applied equally to both

our data sources, the Replica data is more powerful in defining these “activity” contacts since

we directly observe an individual’s activities as trained on cellphone location data. In regions

where Replica data is available, two (synthetic) individuals are connected when they both visit

the same location and overlap in terms of the time of their visit (e.g., being inside a grocery

store; at present, we count even one minute overlaps in visit time as sufficient to establish a

contact). When relying on FRED data, we assume individuals are probabilistically connected

to a subset of other individuals in the same neighborhood, where we define neighborhood as

the same longitude and latitude rounded to the second decimal points (a squared block of

slightly more than 1km2).

To provide a first look of heterogeneity in individual-level contacts across MSAs, in Figure 3

we plot the frequency of expected degrees (i.e. the number of daily contacts) across individuals

in a given MSA. We present these distributions for Sacramento and Chicago separated by the

age and industry of a given individual, along with a vertical dotted line for the average degree

for that group. The differences across age and industry, as well as across MSAs, are worth

noting. In Chicago, for example, an average individual aged 25-49 encounters more than twice

as many people as an individual who is 75 or older. This difference is much less pronounced in

Sacramento. Across industries, healthcare has a very large number of daily encounters—more

than twice as those in manufacturing.

As illustrated in Section 2, our empirical model aggregates individual contacts to a type-

by-type contact matrix Cmt defined in Equation (1). To define types, we start by assigning

individuals to six age bins (0-17, 18-49, 50-59, 60-69, 70-79, 80+) and 2-digit NAICS industry

bins. Next we add two more dimensions of heterogeneity to the type space: comorbidities and

the ability to work-from-home. However, while outcomes vary along these additional dimen-

sions, contacts only depend on age and industry, and are otherwise (random and) statistically

independent as long as individuals are not ill, or under social distancing policies. As more

data become available, this assumption could be relaxed.

Once individuals are assigned their types, our baseline contact matrix Cm0 (i.e. absent any

policy) is derived by aggregating contacts over each type-to-type combination across different

activities. Formally, we let A be the set of possible activities, or types of contacts: work,

school, household, and neighborhood. For each type, ξθm(a) denotes the probability that

type-θ individuals engage in activity a during the day, as observed in the synthetic population

of MSA m. The data also provides us with estimates of

ν(θ, a, θ′) ≡ E
[
# encounters with type θ′

∣∣θ, activity a
]
, (14)

from which we construct our initial, t = 0, contact matrix

Cm0[θ, θ′] =
∑
a∈A

ξθm(a)ν(θ, a, θ′). (15)
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Figure 4: Distribution of Contacts Across Age Bins by County

A. Chicago B. Sacramento

Note: Each figure represents a contact matrix for the Chicago (panel A) and Sacramento (panel B) as constructed
from the Replica synthetic population. Each cell is the expected number of contacts for an individual in the row age
group with individuals in the column the age group. Focal individuals must live within the specified county, but they
can have contacts with those in surrounding counties. The histogram along the bottom is the population distribution
across age bins. This histogram along the right is the sum of all contacts in that row.

Figure 4 provides an illustration of the resulting contact matrices across age types for

Chicago (Panel A) and Sacramento (Panel B). As already highlighted in Figure 3 the Chicago

MSA displays more daily encounters, particularly for the relatively young population. Never-

theless, Sacramento features more contacts between over 70 (high risk) and under 50 (lower

risk) individuals. Although this figure plots the contact matrix across one dimension only (age),

our model employs a multi-dimensional approach. For example, rather that simply recording

contacts between 50-59 year olds and 18-49 year olds, our contact matrix records how many

50-49 year olds, who work in Manufacturing (NAICS:31-33), cannot work from home and are

either obese or diabetic meet 18-49 year olds, who work in Finance and Insurance (NAICS:52),

can work from home and are not obese or diabetic.

3.2 Health and Healthcare Transitions

3.2.1 COVID-19 Research Database

We work with the COVID-19 Research Database12 (C19RD) to begin documenting the conse-

quences of COVID-19 with detailed US healthcare data. This part of our analysis is prelimi-

12Data, technology, and services used in the generation of these research findings were generously supplied pro
bono by the COVID-19 Research Database partners, acknowledged at https://covid19researchdatabase.org/.
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Table 1: Summary Statistics for C19RD Sample

Mean St. Dev. Obs.

Hospitalization 0.056 0.230 3454
ICU Admission 0.017 0.127 3454
Number of Procedures 5.561 6.461 3454
Diabetic 0.204 0.403 3454
Obese 0.339 0.473 3454
Comorbidity (Diabetic or Obese) 0.437 0.496 3454
Charges 561.7 1156.5 3454
Charges if No Hospitalization 429.8 547.7 3253
Charges if Hospitalization 2691.8 3704.2 193
Charges if ICU Admission 5167.4 4757.8 57
Charges if Comorbidity 614.9 1137.6 1508

nary and subject to updates; data in the C19RD are updated weekly. Crucially, our use of the

C19RD is meant to complement the daily growing literature studying the effect of Sars-CoV-2

infection and COVID-19 disease on the health and healthcare needs of different individuals.

(The MIDAS network13 is an excellent source for a comprehensive overview of this literature.)

The C19RD contains regularly updated electronic medical records (EMR), and claims, for

a large portion of the US population. In our current analysis, we focus on easily identifiable,

diagnosed COVID-19 cases. More precisely, we apply a stringent guideline-based definition to

identify a healthcare encounter related to the disease, as detailed in Appendix A.3. This leads

us to a sample of 3,454 individuals living in the US with confirmed diagnoses since the onset

of the epidemic disease, up to May 1st, 2020.

For each individual, we keep track of all medical procedures executed for the event of care,

including indicators for hospitalization and ICU care. In terms of observables, in this timely,

yet preliminary use of the data we keep track of age, diabetes, and obesity. For each case, we

observe total procedure charges. This number is preliminary, since charges in EMR do not

necessarily correspond to charges in the submitted claim. While reported in our summary, we

currently do not use this variable in our analysis, leaving this to later updates.

The C19RD sample is summarized in Table 1. In alignment with mounting evidence from

other sources (see Section 1.4), 5.6% of cases in our sample requires hospitalization, while the

ICU admission rate is 1.7%. Comorbidities—currently we keep track of diabetes and obesity—

are observed in 43.7% of the individuals in the sample. Preliminary measures of charges are,

on average, equal to $562 per-case, but they are five times as large for hospitalized patients,

and ten times as large, on average, for patients requiring ICU admission.

In Figure 5 we plot hospitalizations and ICU admission rates across age types, distinguish-

13Website: https://midasnetwork.us/covid-19/.
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Figure 5: Frequency of Hospitalization and ICU Admissions in C19RD Sample

(a) Hospitalization Rates
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(b) ICU Admission Rates
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The figure shows the average hospitalization rates (left panel) and ICU admission rates (right panel) as observed in
the COVID-19 Research Database sample. Each line distinguishes between individuals with and without comorbidity,
while the horizontal axis distinguishes between age groups that are one dimension of a type in our empirical model.
These incidences of hospitalization and ICU admissions are used to calculate hospital days and ICU days given the
size of the symptomatic population (IHC) in our results in Section 4.

ing between cases with and without pre-exsiting comorbidities (diabetes or obesity). As known,

severity increases sharply with age, showing a critical inflection point after 60. After the age

of 70, patients with comorbidities are both less likely to be hospitalized and less likely to be

admitted to the ICU. This is consistent with the severity of COVID-19 being very high for

these groups, implying both a higher case-fatality rate, and the difficult but rational decision

of hospital staff to focus resources on patients with higher probability of survival.

3.2.2 Comorbidity in the Medical Expenditure Panel Survey

We enrich our definition of a type allowing each age-industry type observed in the contact

matrix within a given MSA to be split in two subgroups (or sub-types): one with comorbidities,

and one without comorbidities.

At the moment, we define an individual as having comorbidities if they are either diabetic

or obese. The Medical Expenditure Panel Survey (MEPS), contains information on these

variables, as well as individual’s age, industry, and a geographic region that is a larger area

covering a set of MSAs.

For any age-industry in MSA m, we assign a fraction κm(age,industry) of individuals to

the age-industry-MSA type with comorbidities, where

κm(age,industry) ≡ Pr [diabetic or obese|age, industry, MEPS region containing m] (16)
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Table 2: Parameters of Θ-SEIIIRDhc Model

Θ-SEIIIRRDhc Parameters Implied
Age Comorbidity εθ τθ ψ γNS γHCθ δθ η CFR

0-4 N 0.25 0.2 0.7 0.045 0.050 0.00000 0.0714 0.0001
0-4 Y 0.25 0.2 ” ” 0.050 0.00001 ” 0.00015
5-17 N 0.25 0.2 ” ” 0.050 0.00001 ” 0.0001
5-17 Y 0.25 0.2 ” ” 0.050 0.00001 ” 0.00015
18-49 N 0.25 0.2 ” ” 0.050 0.00007 ” 0.001
18-49 Y 0.25 0.2 ” ” 0.050 0.00014 ” 0.002
50-59 N 0.25 0.2 ” ” 0.050 0.00036 ” 0.005
50-59 Y 0.33 0.25 ” ” 0.049 0.00071 ” 0.01
60-69 N 0.33 0.25 ” ” 0.048 0.00179 ” 0.025
60-69 Y 0.35 0.33 ” ” 0.047 0.00286 ” 0.04
70-80 N 0.35 0.33 ” ” 0.048 0.00214 ” 0.03
70-80 Y 0.35 0.33 ” ” 0.046 0.00357 ” 0.05
80+ N 0.35 0.33 ” ” 0.046 0.00429 ” 0.06
80+ Y 0.35 0.33 ” ” 0.045 0.00500 ” 0.07

The table lists the parameters of the Θ-SEIIIRRDhc model that we use for our simulations. These parameters are
based on existing literature (c.f. Section 1.4), and are subject to change. The last column on the right indicates the
case-fatality-ratio for each group that is implied by our model parameters. This reflects closely results in Fletcher
et al. (2020) and Ruan (2020).

is computed directly from the MEPS. The remaining fraction of individuals (with weight

1−κm(age,industry)) is assigned to the type with the same age-industry, but no comorbidities.

Importantly, contacts and comorbidities are independent, conditional on age-industry-

MSA; our data contains no information on differential mobility and encounters by comorbidity

status. Richer data would be needed to relax this assumption.

3.2.3 Healthcare Transitions and Model Parameters

We use our estimates from the C19RD to study the healthcare outcomes of COVID-19 infection

beside mortality. As a key ingredient for our simulations, however, the model presented in

Section 2.2.2 requires us to specify a set of parameters determining the transition across the

health states of the population during the epidemic. We let some of these parameters vary by

age and comorbidity.

We currently select parameters from the literature; the reader can refer to the articles cited

in Section 1.4 and to the daily updates to the meta-analysis in the MIDAS network. We are

extremely grateful to Mark Cullen at the Center for Population Health Sciences at Stanford

University for the ongoing cooperation in tracking “sensible” parameters from the literature

to use as inputs in our simulations.

The parameters we use in our Θ-SEIIIRRhc model are listed in Table 2. The only ex-

ception is βmt, which we estimate by indirect inference minimizing the discrepancy between
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our predicted deaths and observed mortality series. The details on this procedure and some

comments on model fit are reported in Appendix B.

3.3 Measures of Work-from-Home and Employment

After defining types by age, industry, and comorbidity, we add a last dimension of heterogeneity

by accounting for the ability of individuals to work from home. As with comorbidity, the

work-from-home dimension of a type is probabilistic: we split each age-industry-comorbidity

type into two, corresponding to those able or unable to work from home, respectively. The

fraction of individuals who can work from home given age and industry is ω(age, industry).

Comorbidities and ability to work from home are statistically independent, an assumption

which could be relaxed with richer data.

Our estimates of ω(age, industry) are derived following closely the approached introduced

in Dingel and Neiman (2020) and Mongey et al. (2020). This approach combines data on

activities and employment by occupation (from Occupation Information Network, O∗NET,

and the Occupation Employment Statistics, OES), with the composition of occupations by

industry and age from the American Community Survey (ACS).

First, we use O∗NET to construct a measure of the likelihood that a given 2-digit occupation

o may be conducted from home. For this, the O∗NET contains average responses to survey

questions regarding more than 250 job attributes, and is at the 6-digit occupation level. For

example for the attribute, “Wear protective or safety equipment” we observe the average of

worker responses that themselves range from 1 (never), to 5 (every day). We focus on 17 job

attributes that reflect a job that would be difficult to reallocate to home. (See Mongey et al.,

2020, for more details.)

We then use the distribution of employment within 2-digit occupations, across 6-digit

occupations from the OES to aggregate each of these scores to the 2-digit occupation level.

We then assign a 2-digit occupation o a work-from-home status of 1 if any of 17 job attributes

have an average score of more than 3.5, indicating an average response of, for example, wearing

protective equipment regularly. At the two digit occupation level this gives an indicator

wo ∈ {0, 1}.
Lastly, we use national ACS data to construct the distribution of 2-digit occupations o

conditional on age and 2-digit NAICS: Pr(o|age, industry) ∈ [0, 1]. The use of national data is

motivated by the fact that MSA-level data including occupation-industry-age is not sufficiently

fine for this exercise. With these we derive our desired fraction of individuals within a age-

industry who can work from home:

ω(age, industry) =
∑
o

wo × Pr(o|age, industry). (17)

This will affect both, our employment outcomes (even when the workplace is closed, the

individual can work) and our policies, insofar firms and local governments can ask individuals
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to work from home if possible.

3.4 Policies and Counterfactuals

3.4.1 Policy Sequences

We use the model to collect series of health, economic, and healthcare outcomes along different

sequences of policies φ. We distinguish between three phases, with t = 0, ..., T1 indicating phase

1, t = T1, ..., T2 for phase 2, and t = T2, ..., T for phase 3. These are tailored to the COVID-19

pandemic policy response across the vast majority of the United States.

We set t = 0 corresponding to March 5th, 2020. In Phase 1, we impose no policy between

March 5th and t = T1 = 15, where T1 = 15 corresponds to March 20th:

NP - No Policy: In the no policy regime, for t = 0, 1, ..., T1, φt = φNP, and the contagion

patterns are determined by the contact matrix Cm0 as defined in Equation (15) above.

Precisely:

Cφ
NP

mt [θ, θ′] = Cm0[θ, θ′] = ξθm(household)ν(θ,household, θ′)

+ ξθm(neighborhood)ν(θ,neighborhood, θ′) (18)

+ ξθm(work)ν(θ,work, θ′)

+ ξθm(school)ν(θ, school, θ′).

In our baseline Phase 2, i.e. between t = T1 and t = T2 = 75, corresponding to May 19th,

each MSA sets φt = φEO, indicating a regime in which only essential activities are allowed.

Precisely,

EO - Essential Only: Essential workplaces such as hospitals, groceries, and transportation

are open;14 all other workplaces and locations are closed. No contacts outside these

locations are kept aside for all household interaction and 10% of neighborhood interaction.

Formally, φEO imposes

Cφ
EO

mt [θ, θ′] = ξθm(household)ν(θ,household, θ′)

+ 0.1ξθm(neighborhood)ν(θ,neighborhood, θ′) (19)

+ 1
{
θ, θ′ are essential workers

}
ξθm(work)ν(θ,work, θ′).

In Phase 3, i.e. after May 19th we consider alternative policies between t = T2 and t = T = 150,

corresponding to August 2nd, the last day in our analysis at the moment. During this period,

φt can be one of the following:

14Essential industries corresponds to agriculture, forestry, fishing and hunting, mining, utilities, manufacturing,
wholesale trade, transportation and warehousing, health care and social assistance, public administration.
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CR - Cautious Reopening: With φt = φCR indicating that there is no regulatory restriction

on mobility or encounters; schools and workplaces are open. However, neighborhood

interactions are still reduced to 10% of the normal, pre-pandemic level. This captures

recommendations to use caution, limited capacity of grocery stores, and additional social

distance measure enacted voluntarily. Formally, φCR is such that

Cφ
CR

mt [θ, θ′] = ξθm(household)ν(θ,household, θ′)

+ 0.1ξθm(neighborhood)ν(θ,neighborhood, θ′) (20)

+ ξθm(work)ν(θ,work, θ′)

+ ξθm(school)ν(θ, school, θ′).

60+ - Isolate 60+: With φt = φ60+ indicating that there is no regulatory restriction for

anyone, but individuals who are 60 or older must limit their contacts to household and

neighbor (local stores). Neighborhood interactions are still reduced to 10% of the normal,

pre-pandemic level. Formally, φ60+ is such that

Cφ
60+

mt [θ, θ′] = ξθm(household)ν(θ,household, θ′) (21)

+ 0.1ξθm(neighborhood)ν(θ,neighborhood, θ′)

+ 1
{
θ, θ′ both under 60, or both essential workers

}
ξθm(work)ν(θ,work, θ′)

+ ξθm(school)ν(θ, school, θ′).

WFH - Work-from-Home if Possible: Individuals who are able to work from home produc-

tively do so, and do not form contacts at their workplace. All other employed, healthy

individuals access their workplace and form contacts accordingly. Schools are open,

household contacts are as usual, and neighborhood interactions limited to 10% of pre-

pandemic levels. Formally, φWFH is such that

Cφ
WFH

mt [θ, θ′] = ξθm(household)ν(θ,household, θ′) (22)

+ 0.1ξθm(neighborhood)ν(θ,neighborhood, θ′)

+ 1
{
θ, θ′ both cannot WFH, or both essential

}
ξθm(work)ν(θ,work, θ′)

+ ξθm(school)ν(θ, school, θ′).

AS - Alternating Schedules: Students and workers in all schools and workplaces are split

into two groups that do not intersect. The thought experiment corresponds to alternating

schedules (morning and afternoon), or alternating days (MWF and TThS); alternative

versions could consider alternate weeks, implying different disease dynamics.15 Neigh-

borhood interactions are again reduced to 10% of pre-pandemic levels. Formally, for each

15Delays in the manifestation of symptoms and test results are key drivers of these differences. Exploring optimal
alternation could be an interesting direction for future work.
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Figure 6: Contact Matrices Along the NP-EO-WFH Policy Sequence in Chicago

(a) CφNP

m in Chicago (b) CφEO

m in Chicago (c) CφWFH

m in Chicago

Note: The figure displays the sequence of contact matrices to study the policy sequence no policy (NP) in Phase

1, essential only (EO) in Phase 2, and work from home (WFH) if possible in Phase 3. Our simulation procedures

imposes the sequence of contact matrices, and records the outcomes of the Θ-SEIIIRDhc model, including active,

employed individuals, and healthcare utilization.

type we consider a 50-50 split from θ to θ[1] and θ[2]; each corresponds to one subgroup,

and we suppress any workplace or school interaction between θ[1] and θ[2] as long as θ is

non essential.16 We then have φAS being such that

Cφ
AS

mt [θ[k], θ
′
[`]] = ξθ[k]m(household)ν(θ[k],household, θ′[`])

+ 0.1ξθ[k]m(neighborhood)ν(θ[k],neighborhood, θ′[`]) (23)

+ 1
{
θ[k], θ

′
[`] both essential

}
ξθ[k]m(work)ν(θ[k],work, θ′[`])

+ 1
{
θ[k] or θ′[`] not essential, and k = `

}
0.5ξθ[k]m(work)ν(θ[k],work, θ′[`])

+ 1 {k = `} 0.5ξθ[k]m(school)ν(θ[k], school, θ′[`]).

Although we limit our attentions to sequences of NP, EO, CR, 60+, WFH, and AS, our

model is suited to analyze a very large class of policies. Importantly, the richer the data on

activities, mobility, and encounters, the larger the set of policies one could consider.

3.4.2 Simulations and Outcomes

We simulate outcomes given parameters for Phase 1, and then consider combinations of EO,

CR, 60+, WFH, and AS for Phase 2 and Phase 3. When discussing our results in Section 4

we will focus on sequences imposing EO in Phase 2, the modal path of most MSA in the US.

16Technically, our contact matrix now has higher dimensionality, as for each type corresponding to a nonessential
worker we have two sub-types.
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The changes to policy in Phase 2 are retrospective, and have therefore more limited normative

implications. In our current analysis we do not consider changes to Phase 1 policies, although

such an analysis is feasible in our framework.

For every MSA, we start by constructing the contact matrices corresponding to the desired

policy sequence φ. Figure 6 shows the three matrices Cφ
NP

m , Cφ
EO

m , Cφ
CR

m for the Chicago MSA.

This is the input to analyze the sequence NP in Phase 1, EO in Phase 2, and CR in Phase 3.

Armed with the contact matrices, we run our Θ-SEIIIRRDhc model. We keep track of the

number of individuals in each state (i.e. susceptible, infected etc) which allows us to calculate

the total number of deaths at the end of Phase 3, a key outcome in our analysis. Beyond

this outcome, we compute the number hours, individuals are unable to work under a policy

sequence. This depends on the policy φ, and on the epidemic outcomes, since individuals

who are symptomatic do not work, and the same applies to quarantined individuals who

cannot work from home. Lastly, we use our estimates of the rates of hospitalizations and ICU

utilization by type, to compute the healthcare outcomes beyond death of a given trajectory of

the epidemic.

4 Results

4.1 Baseline Model Prediction

We start by examining the evolution of outcomes in one MSA under the scenario in which it

adopts the Cautious Reopening (CR) policy in Phase 3, following no policy (NP) in Phase

1 and essential only (EO) in Phase 2. We consider this our baseline policy sequence for two

reasons. First, the sequence of NP and EO is representative of the policies that were adopted

in most localities during Phases 1 and 2. Second, CR represents a policy where no direct

restrictions are imposed, but which still captures a reduction of contacts in an individual’s

neighborhood due to social restrictions and social distancing measures.17

Figure 7 plots predicted outcomes for Chicago in Phases 1, 2 and 3. In terms of epidemic

outcomes, depicted in Figure 7a, the Chicago MSA experiences a growth of cases during Phase

2—despite the EO policy—with a “peak of the curve” at t = 50 when approximately 2.5% of

the population is infected and symptomatic.

When the MSA moves from EO to CR, our model predicts that within ten days, infection

rates will increase again. The new peak, at t = 115, corresponds to almost 4% of the pop-

ulation being infected and symptomatic (or detected). This is reflected in a higher growth

rate of cumulative deaths, and a larger number of individuals who, on a given day, need to be

hospitalized or admitted to the ICU (Figure 7c). Importantly, this version of our model does

17As Allcott et al. (2020a) describe, voluntary social distancing has been broadly adopted in areas without enforce-
able lock-downs across the United States, and so this is likely the most representative description of how removing
strong social distancing policies would manifest. (See also Brzezinski et al. (2020); Chetty et al. (2020); Gupta et al.
(2020); Villas-Boas et al. (2020).)
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Figure 7: No Policy-Essential Only-Cautious Reopening Policy Sequence

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Cautious Reopening in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased.

not account for hospital capacity and ICU capacity. This is an important venue for future

work, since if our predicted hospitalization and ICU admissions exceed capacity, we expect

death rates among symptomatic individuals to increase.

As shown in Figure 7b, when EO is imposed, only slightly more than 60% of individuals

in Chicago are actively employed—either as workers in essential industries or by being able

to work from home. This number decreases to 55% as individuals contract the disease, and

either get sick, die, or become quarantined and unable to work from home. The CR policy—
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Figure 8: No Policy-Essential Only-Cautious Reopening Across MSAs

(a) Sacramento, Epidemic Outcomes
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(b) New York, Epidemic Outcomes
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(c) Sacramento, Employment Outcomes
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(d) New York, Employment Outcomes
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(e) Sacramento, Healthcare Outcomes
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(f) New York, Healthcare Outcomes
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Note: The figure shows outcomes series with No Policy in Phase 1, Essential Only in Phase 2, and Cautious Reopening
in Phase 3. The left column shows results for the Sacramento MSA, based on Replica data; the right column shows
results for the New York MSA, based on FRED data. For further details refer to note to Figure 7.
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under which the population returns to work—dramatically reduces the number of inactive

individuals. However, even under CR, we see a new drop in employment 15 days into this

phase, due to the rising number of sick, deceased, and quarantined individuals.

In Figure 8 we show the same outcome series for the Sacramento (Replica-based, like

Chicago) and the New York (FRED-based) MSAs. These figures hint at considerable hetero-

geneity across the different regions. For example, in New York, the infection rate is relatively

high under EO in Phase 2, but decreases steadily in Phase 3, even with the less stringent CR

policy. Unlike Chicago, New York experiences a second peak of infection in Phase 3 that is

30% lower than the level of Phase 2.

As we showed in Section 3, Sacramento is less densely populated than Chicago and New

York and features fewer individual contacts. As such, it does not exhibit a peak of infections

in Phase 2, but infections, deaths, hospitalization, ICU admissions and the number of inactive

individuals (due to illness, death, or quarantine) increase in Phase 3, with a peak at t = 110.

However, it is important to notice how for this area, our model predicts an overall limited

magnitude of the COVID-19 outbreak.

4.2 Outcomes across Counterfactual Policy Sequences

We can compute the time series introduced above for any policy sequence, as well as cumulative

counts for each of our key outcomes. We now turn to comparing our baseline NP-EO-CR policy

sequence with key alternatives. Our emphasis will be on sequences along which local authorities

still impose NP in Phase 1, and EO in Phase 2. However, for Phase 3 we will consider not only

CR, but also the 60+, WFH, and AS policies as alternatives. For the sake of completeness, we

also allow for counterfactual policies in Phase 2. However, as these refer to a counterfactual

past, we consider them less relevant and do not emphasize their results.

For each alternative policy sequence, we compute cumulative outcome measures (total

deaths, and total days of employment lost, etc.) at the level of each MSA. In Figure 9 we plot

the cumulative number of deaths against days of employment lost, both in absolute magnitudes

and relative to NP-EO-CR. The lower-left-most boundary of each graph may be read as a

“death-to-employment frontier”.18 Triangular markers indicate cumulative outcomes for the

sequences NP-EO-CR (baseline), NP-EO-60+, NP-EO-WFH, and NP-EO-AS in each MSA.

Each marker is labeled with reference to the corresponding Phase 3 policy. Other (dotted)

markers refer to changes in policy in Phase 2, so that NP-60+-CR, NP-AS-CR, NP-AS-WFH,

etc. are also evaluated, for a total of 25 possible combinations across Phase 2 and Phase 3.

Figure 9 shows how our empirical framework delivers several insights, both within MSA

and across MSAs. First, there is substantial heterogeneity in relative differences across policies

in Sacramento as compared to Chicago and New York. In Sacramento, there is little difference

across all of the policies for the total number of deaths due to COVID-19, both in relative and

18As noted in Acemoglu et al. (2020), this frontier may be useful in demonstrating the trade-offs between economic
losses and public health losses from each policy.
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Figure 9: Health and Employment Outcomes for Counterfactual Policy Sequences
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absolute terms. This is a direct consequence of the smaller number of contacts. At the same

time, as one would expect, the imposition of EO or AS in Phase 3 would be relatively more

costly in terms of inducing employment losses compared to CR, WFH or 60+.

By contrast, for Chicago and New York, there seems to be substantial heterogeneity across

policies in terms of outcomes along both mortality and employment. For example, in Chicago,

any of the alternate policies that we consider would make a large difference in reducing deaths

with respect to a cautious reopening. In fact, we predict that WFH in Phase 3 reduces the total

number of deceased individuals (up to August 2nd, 2020) by almost 40%, while maintaining a

very similar level of employment losses.

Furthermore, for both Chicago and New York, isolating 60+ in Phase 3 appears to be

Pareto-dominated by imposing a work-from-home regime for the occupations that can be

executed remotely (WFH). This suggests that simply isolating 60+ year olds—who are at

higher risk for severe cases of COVID-19—is not as effective in reducing deaths as WFH even

at a comparable level of unemployment.

We also find that, at the cost of slightly higher employment losses, alternating schedules

(AS) is very effective in limiting deaths in both cities. If avoiding loss of lives was the only

objective, AS would always rank second for Phase 3, topped only by prolonging the regime

of EO into the summer. Note that here we are considering the “pure” AS policy, where all

individuals work on alternate days. A hybrid solution where those who can work from home,

do, and those who cannot, work on alternate days might potentially do even better than these

two policies individually. Clearly, a deeper knowledge of the local economy, and the productive

and organizational structure of local firms and establishments would be essential for a practical

implementation of AS.

Although Chicago and New York are both large metropolitan areas, we observe notable

differences in comparing their responses to different social distancing policies. As noted above,

the two cities exhibit different disease dynamics: Chicago experiences a less-severe outbreak

in Phase 1 and Phase 2, but remains more exposed to a severe outbreak in Phase 3. As a

consequence, the model suggest that EO in New York was, in a sense, necessary. No alternative

to EO in Phase 2 is Pareto-dominated by the baseline sequence NP-EO-CR. This is not the

case in Chicago, where a slower epidemic outbreak in Phase 1 would have allowed imposing

milder restrictions in Phase 2, but where the differences in outcomes across Phase 3 policies

are now larger. Intuitively, the early path of the outbreak in Chicago left a larger number of

susceptible individuals in Phase 3, making social distancing policies more salient. As such,

while WFH reduces deaths by 40% in Chicago as compared to the baseline policy, in New York

this number is about 20%.

The heterogeneity of policy outcomes across areas is not only a function of differences in

early disease dynamics and contact density across MSAs, but also of their different distributions

of age-industry-occupation-comorbidity types, and cross-types encounters. As such, our model

would be expected to produce different results for other cities, depending on their properties

along these different dimensions. Finally, it is important to note that our New York results
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Table 3: Selected Counterfactual Outcomes for Chicago

Policy Sequence Cumulative Outcomes
Deaths Hospital ICU Employment Loss

Phase 1 Phase 2 Phase 3 (total) (total days) (total days) (1000s days)

NP EO NP 26890 1014953 165319 79193
NP EO EO 3693 120707 20216 115765
NP EO CR 6765 267024 46099 66728
NP EO AS 4328 158005 26538 87822
NP EO WFH 4595 168852 29224 59129
NP EO 60+ 5331 236176 40870 69828
NP WFH WFH 5898 215612 39364 16199
NP 60+ 60+ 7038 301088 55082 33644
NP AS AS 5580 193112 32509 67873

Note: The table shows all cumulative outcomes for Chicago across alternative policy sequences. Appendix Appendix C
contains a rich class of combinations for all MSAs, reporting cumulative outcomes and outcome dynamics.

are based on the FRED synthetic populations, while Sacramento and Chicago are based on

Replica’s proprietary data.

As a last note, it is important to reiterate that all of the results in this section (including

CR) are assuming reduced neighborhood contact. We do not consider a full “back to normal,”

or formally NP in Phase 3. In Table 3, we summarize selected policy comparisons for Chicago,

including our baseline policy sequence, amended to have NP in Phase 3. As demonstrated in

the table, reopening fully without any restrictions to mobility and encounters of any sort would

lead a much higher number of deaths, hospitalizations and ICU admissions. In Appendix C

we report tabular and graphical output across a large number of policy combinations for each

MSA.19

4.3 Behavioral Changes, Masks, and Lower Contagion

Mandatory policy intervention becomes less necessary if individuals respond more to the spread

of disease by voluntarily taking preventive measures such as wearing masks and keeping 6 ft

apart. Such measures reduce the spread of respiratory droplets, and subsequently decrease the

disease transmission rate (Prather et al., 2020).

In our model, the take-up of preventative measures in individual behavior corresponds to

lowering the transmission probability upon contact, βmt. For our main results, we employ

two sets of calibrated βmt parameters for each MSA: an initial β1
m that governs transmission

during Phase 1, and a reduced β2
m that governs transmission during Phase 2 and Phase 3.

19The online material for this project (www.reopenmappingproject.com) will contain results for all MSAs in the
US. These will be based on FRED data whenever and as long as Replica data are not yet available.
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Table 4: Sensitivity to Transmission Rate βmt

Policies Baseline Phase 1 β1
m Phase 2 β2

m 0.9βmt 0.75βmt 0.5βmt 0.25βmt

Chicago

CR Deaths 6,765 16,195 6,733 6,133 5,225 3,484 517
Emp. Loss (Mil. Days) 66.7 83.4 67.0 65.4 63.2 57.9 46.9

WFH Deaths 4,595 12,101 4,434 4,140 3,515 2,325 481
Emp. Loss (Mil. Days) 59.1 72.7 58.9 58.2 56.7 53.1 46.8

Sacramento

CR Deaths 411 916 308 366 286 145 54
Emp. Loss (Mil. Days) 13.4 14.7 13.0 13.2 12.9 12.4 12.0

WFH Deaths 404 793 302 361 283 143 54
Emp. Loss (Mil. Days) 13.4 14.3 12.9 13.2 12.9 12.4 12.0

New York

CR Deaths 38,431 58,222 34,328 33,621 26,442 14,658 4,399
Emp. Loss (Mil. Days) 163.0 168.5 168.0 161.9 156.7 137.6 109.2

WFH Deaths 34,057 56,120 28,153 28,521 20,873 10,781 4,125
Emp. Loss (Mil. Days) 149.6 161.9 149.8 146.3 139.4 124.7 108.2

Note: The table shows how the simulated results change with transmission parameter βmt. “Baseline” shows our
main results using the calibrated parameters for Phase 1 and Phase 2. We then consider setting βmt to the calibrated
value from Phase β1

m (for all periods), and to the calibrated value from Phase 2 β2
m. To demonstrate sensitivity to

these values, we scale the baseline βmt values by a constant factor of 0.9, 0.75, 0.5, and 0.25. Each row shows deaths
or employment loss in million-days for Sacramento, Chicago, and New York under two different reopening policies
after May: Cautious Reopening (CR) and Work-From-Home if Possible (WFH).

Both of these parameters are calibrated with respect to observed death rates at the onset of

the disease outbreak.20 We allow βmt to vary between phases during calibration to account

for the possibility that behavioral responses became more rampant as lock-down policies pro-

liferated. Although we do not impose any further restrictions on β1
m and β2

m, we find that β2
m

is substantially lower than β1
m, suggesting that behavioral responses were indeed being taken

up during Phase 2.

We test the sensitivity of our results to βmt in Table 4. Focusing on the comparison between

the CR and WFH policies, we compute deaths and employment loss under several alternative

values of βmt in each city. Under the “Baseline” column, we report the death and employment

loss numbers under our main setting with the different, calibrated β1
m and β2

m values. We

then fix βmt = β1
m and (in the next column) βmt = β2

m for all periods t. Finally, we scale the

baseline βmt with a constant factor of 0.9, 0.75, 0.5, and 0.25 in each period.

As Table 4 shows, the relative performance of CR to WFH is largely preserved, even at a

substantially reduced βmt. However, the extent to which behavioral responses can substitute

for policy restrictions also varies across regions. For instance, reducing the baseline βmt by

10% under CR leads to fewer deaths and less employment loss in Sacramento than switching to

20See Appendix B for details.
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WFH under the baseline βmt. By contrast, in order to achieve a similar Pareto improvement

in Chicago or New York, βmt would need to be reduced by over 25%.

5 Conclusions

We develop an empirical model to study policy responses during a pandemic outbreak, with

an immediate application to the Sars-CoV-2 and COVID-19 pandemic. Our model is explicit

about geographic and age-industry-comorbidity heterogeneity across individuals in their mo-

bility and encounters patterns, their health risk specific to the disease, and their ability to

work from home. This framework allows us to capture how different areas can expect different

outcomes along alternative policy sequences. We inform our model with data on mobility,

healthcare outcomes, and death series. This empirical framework is flexible in ingesting new,

or different data, and it can be expanded to consider a richer set of policy alternatives.

Our results highlight the difference in trade-offs that different areas face when deciding

how and when to re-open their local economies and relax social distancing measures. Areas

that are hit early and have highly connected populations might expect a lower growth of the

number of cases when relaxing social distance measures, while areas that had limited severity

in the pandemic outbreak in early 2020 might expect cases to grow faster when these measures

are relaxed and individual contacts grow, fueling contagion.

Policies by which individuals who can work from home do so, or policies by which school and

work schedules are alternated (splitting classes and employees in groups) appear very promis-

ing for limiting contagion, while also containing employment losses. Behavioral responses in

limiting contacts, and precautions such as wearing masks, can play a significant role in limiting

the severity of the disease outbreaks.

Our current results are preliminary, and do not tackle directly a variety of important

considerations. As mentioned above, we abstract away from hospital and ICU capacity in

a given geographic area, and we do not yet observe healthcare outcomes broken down by

geography. More data are available every week, and we are working to expand our analysis

to encompass more of these details. The model is flexible, and designed to include these.

Importantly, moreover, by looking at aggregate outcomes, we do not explore the heterogeneous

and possibly distributional effects of policies across different types. The choice of policy affects

who gets infected and which jobs are lost.21 As such, our ongoing agenda is to include a

richer description of socioeconomic status in the definition of a type, and investigate how our

policies influence individuals in different income groups, races, and age groups. In terms of

counterfactuals, our current results analyze one policy at a time. A natural next step is to

combine policies (e.g., work-from-home if possible and isolate 60+) to locate their outcomes

on the frontier. Finally, we have not directly looked into the effects of different policies on

the broader production supply-chain network of the economy. Since shutting down a specific

21For instance, Mongey et al. (2020) show that low-income, less-educated workers are more economically vulnerable.
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sector has externalities on other sectors (Baqaee and Farhi, 2019), this is potentially a first-

order concern and we hope that mobility data can be used to investigate this angle as well.
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Appendices

A Details on Data Sources

A.1 Replica Data

A.1.1 Building a Synthetic City

Replica is a transportation planning company spun out of Alphabet in 2019.22 For each

city, Replica generates a synthetic representation of the activities and movement of residents,

visitors, and commercial vehicle fleets for a representative week during a quarter. Replica

ingests data from four primary sources in order to create these synthetic cities: 1) public

use census data; 2) granular location data for a sample of devices, from both GPS pings and

triangulation between cellular towers; 3) proprietary data describing features of various points

of interest (POIs), such as their exact location, brand, and industry; and 4) data from public

agencies on traffic and transit usage (‘ground truth’), often sourced from sensors placed on

roads and public transit turnstiles.

There are four major steps to constructing a Replica city.

1. Build a synthetic population with people and households that with demographics that

mirror the joint-distributions of the real population’s demographics and household struc-

ture.

2. Assign each person a home and, where applicable, a work or school location.

3. Generate a ‘typical day’ of mobility for each person, consisting of an activity sequence

(e.g., [home, work, eat, work, shop, home]), a location for each activity, and travel modes

between activities. Figure Figure A.1 provides an illustrative example of an activity

sequence for a single individual.

• Activities are produced using generative models trained on GPS and telco devices.

Location data from GPS traces are very spatially accurate, but cover only a small

sample of devices, whereas location data from telco devices are less spatially accurate

(as they depend on triangulation between cellular towers), but cover upwards of 20%

of the population.

• There are three generative models: the first determines the activity sequence for the

day, the second determines exact locations of the non-home/work activities, and the

final assigns travel modes between each activity based on the origin/destination and

available travel modes.

• Mobility ‘personas’ comprising of the above generative models are matched to the

synthetic population based primarily on their home, work, and school locations, plus

22For more information, visit their website: https://replicahq.com/
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some model that infers their age, employment status, vehicle ownership, and other

demographics.

• Residents under 5 are not modeled. Residents under 16 are not in the labor force

and only go to school and their home. College students may go to school in addition

to work, shop, and other standard activities.

4. Calibrate using various ‘ground truth’ data sources provided by each city, including

transit usage, cars on highways (from sensors), and others.

The process accomplishes two primary goals: 1) accurately capture the true movement of

individuals in a city and 2) protect the privacy of those in the underlying location data. No

individual in the synthetic population can me matched to an exact device.

Each Replica city is built separately, using all available data for a given quarter. Generating

a new Replica city requires significant data gathering efforts and computational time. As such,

coverage is currently limited to a handful of US cities.

Figure A.1: Illustration of an activity sequence

A.1.2 Defining a Graph of Interactions

We construct the graph of social interactions in a city using the locations and times of activities

for each person. In this graph, people are nodes and edges are formed between people whenever

they are at the same location at the same time. Locations are varied in sizes. Edges can be

formed between people doing two different activities, e.g., between a customer shopping and

an employee working at the same store.

‘Core’ and ‘Donut’ Geographies: The graph is built for the full Replica city, which

includes outer areas. However, degree distributions for people who live on the geographic

boundary of the Replica city would be inaccurate; interactions with those who live on the

other side would not be observed. To help account for this, our results use as focal individuals

only those living in the ‘core’ counties of these areas (Cook County and Sacramento County).

Edges formed with those outside the core (people in the ‘donut’ region) still count towards,

for example, a core person’s degree distribution and contacts.
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Workplaces: Employed residents are assigned industries and accompanying workplaces.

For customer-facing industries, we assign workers to workplaces corresponding to points of

interest (POIs) of the corresponding industry (e.g., a ‘Retail Trade’ worker may be assigned

to work at a Walmart). POIs are not available for all workplaces; while a Walmart or dentist’s

office would appear in our POIs data, a hedge fund’s office would not. For industries that

encompass firms that are either infrequently visited by customers or absent from our data on

POIs—for example, construction and manufacturing—we divide workers into workplaces by

sampling from a distribution of workplaces sizes.

The full procedure for assigning a given employed resident a specific workplaces is as follows:

1. Take all employed workers in a Census Block Group (CBG), industry (NAICS 2-digit)

pair.

2. For those are in industries that are customer-facing and have data on POIs,23 randomly

assign POIs of the same industry as the worker as workplaces, weighting by the number

of visits to that POI relative to other POIs in that CBG-NAICs. So a Walmart that

receives 50% of all retail traffic in a given CBG will have 50% of the retail workers in

that CBG assigned to it as ‘employees’

3. For workers in other industries,24 we divide up large groups of workers in a CBG-NAICS

into smaller workplaces. For CBG-NAICS that have >150 employees, we break them

into groups where a worker’s group number is sampled from a Poisson distribution. The

rate parameter is chosen so that the average group size is 75 employees.25

4. For POIs with a large number of employees assigned via the above method, we break

into working divisions using the same parameters.

5. For workers, edges are formed between coworkers at work simultaneously and—when the

workplace has a POI—between workers and customers who arrive while the worker is

present. Worker-to-worker links for large workplaces must be within the same ‘group,’

but worker-to-customer do not.

Schools: Students are assigned schools by Replica; however, many schools are unrealistically

large (e.g., a college campus would be considered a single school). To help address this issue,

we break up schools into classes in a similar manner to how we divide up large workplaces,

but with different parameters. In schools with over 100 students, each student is assigned a

class where class number is sampled from a Poisson distribution where the rate parameter is

calibrated to produces average class sizes of 50 students. All students within the same

23The following industries are matched to POIs: ‘Wholesale Trade’, ‘Retail Trade’, ‘Information’, ‘Finance and
Insurance’, ‘Real Estate and Rental and Leasing’, ‘Professional, Scientific, and Technical Services’, ‘Health Care and
Social Assistance’, ‘Arts, Entertainment, and Recreation’, ‘Accommodation and Food Services’

24These include: ‘Construction’, ‘Manufacturing’, ‘Transportation and Warehousing’, ‘Administrative and Sup-
port’, ‘Educational Services’, ‘Other’, ‘Public Administration’.

25In future versions, these parameters will be calibrated to match the true distribution of firm sizes in a given
industry-location.
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We are currently investigating data on both firm size (by industry) and average class size

for schools within a given Census Tract. With this data, we can calibrate the distribution of

workplaces groups and school classes to better match the true distribution.

Households: Members of the same household are all connected, with a single contact of

activity type ‘home.’

A.1.3 Comparing Replica and ACS Populations

We compare Replica’s synthetic population to the 2018 5-year ACS. Figures Figure A.2a and

Figure A.2b plot the distributions of ages in each population for Chicago (Cook County) and

Sacramento (Sacramento County). Figures Figure A.2c and Figure A.2d plot the distributions

of industries for workers. Figures Figure A.2e and Figure A.2f plot the distribution of age-

industry types. The age distributions are nearly identical, but Replica consistently under-

matches the number of people in a given industry by a small margin.

A.2 FRED Data

A.2.1 Synthetic Population in FRED

FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source

agent-based modeling system for studying pandemic influenza. FRED uses open-access census-

based synthetic populations developed by RTI International, which capture the demographic

and geographic heterogeneities, including realistic household, school, and workplace social

networks.

We use the 2010 version of synthetic population accessed from FRED website (https://

fred.publichealth.pitt.edu/syn_pops). The following steps summarize the construction

of the synthetic population at a high level. Please refer to Cajka et al. (2010) for more detailed

descriptions.

1. The synthetic population uses an iterative fitting method to generate a population from

US Census Bureau’ s Public Use Microdata files (PUMS) and aggregates data from the

2005-2009 American Community Survey (ACS) 5-year sample.

2. Determines the number of household in each census block group based on Summary

File 3 (SF3) Data from Census, and randomly generates a GIS point location for each

household within each census block.

3. Assigns school-age individuals to schools, using National Center for Education Statistics

(NCES) Public School Data for 2005–2006, US Census Bureau 2000 TIGER road network

data, and private school information from Schoolinformation.com. The allocation to

public school is based on a minimum path algorithm that assigns a student to the closest

school that has capacity for his/her grade level. The remaining school-age individuals

are assigned to private schools or home school.
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Figure A.2: Comparing ACS and Replica Populations
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Note: These Figures compare the distribution of age, industry, and age-industry in both Replica and the 2018 5-year
ACS populations for Chicago and Sacramento.
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4. Assigns non-school-age population to workplaces, using US Census Bureau Special Tab-

ulation Product 64 (STP64) and 2006 InfoUSA Business Counts, following a two-stage

method. The first stage assigns workers to a Census tract for work. The second stage

creates individual workplace locations within each Census tract and assigns workers to

specific workplaces.

A.2.2 Defining a Graph of Interactions

Using the synthetic populations within each MSA, we construct the graph of social interactions

using locations and assignments of households, schools, and workplaces.

Workplaces: Individuals contact colleagues in the same assigned synthetic workplace. In

the synthetic population, the size of workplaces can be large. So we break workplaces into

subgroups, using a similar procedure as described in Appendix A.1. The size of subgroups is

sampled from a Poission distribution and the rate parameter is an exponential transformation

of the size of synthetic workplace relative to the average size in each MSA.26

Since industry is a key source of heterogeneity we consider, we assign a 2 digit NAICS

code to each synthetic workplace. We take the 2007 County Business Pattern, which includes

the number of establishments in each county × NAICS-2 × size cohort27. Using the synthetic

workplaces and assigned workers, we group workplaces in each county into the same size

cohorts. Then, we randomly assign each workplace an NAIC 2 code assuming a multinomial

distribution.

Schools: Students interact with other students assigned to the same synthetic school. We

divide up schools similar to the procedure for workplaces.

Neighborhoods: We assume individuals form contacts with others living in the same

neighborhood. A neighborhood covers the same longitude and latitude rounded to the second

decimal points, which is a squared block of slightly more than 1km2. According to this defini-

tion, a neighborhood block can include many people in metropolitan areas, and we divide up

neighborhood blocks similar to the procedure for workplaces and schools.

Households: We assume individuals contact all other members in the same household.

A.3 Healthcare Data

The sample of confirmed 3454 confirmed cases from the COVID-19 Research Database is

constructed as follows. First, we consider all individuals for which we observe electronic medical

26The rate parameter is equal to 4 + (100 − 4) × (1 − exp(−α × workplace size/avg neighborhood size)) where α
is a parameter we calibrate.

27Size is in terms of number of employees, with the following cohorts ¡5, 5-9, 10-19 20-49, 50-99, 100-249, 250-499,
500-999, 1000-1499, 1500-2499, 2500-4999, 5000+
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records. We identify our sample considering the official guidelines for ICD10 coding, and in

particular we include all individuals for which we observe one of the following ICD10 diagnostic

codes between Jan-1-2020 and May-1-2020: U04.9, B34.2, U07.1, U07.2.

Centers for Disease Control and Prevention (CDC) guidelines before April 2020, the official

codes for COVID-19 were

• U04.9 Severe acute respiratory syndrome [SARS], unspecified;

• B34.2 Coronavirus infection, unspecified site.

After April 2020 the CDC guidelines included new WHO recommendations to exclude COVID

diagnoses from using the above codes, and instead adopt:

• U07.1 COVID 19, virus identified Description: ”Use this code when COVID-19 has been

confirmed by laboratory testing irrespective of severity of clinical signs or symptoms. Use

additional code, if desired, to identify pneumonia or other manifestations”;

• U07.2: COVID 19, virus not identified. Description: ”Use this code when COVID-19

is diagnosed clinically or epidemiologically but laboratory testing is inconclusive or not

available.Use additional code, if desired, to identify pneumonia or other manifestations”.

For these individuals, we consider all procedures observed between 25 days prior and 20

days after the diagnosis. We then identify hospitalizations using CPT codes 99221-99239, and

ICU admissions using CPT codes 99291 and 99292.

To identify diabetes, we use ICD10 E11, ICD9 250, and SNOMED 7321109. To identify

obesity, we use ICD10 E66, ICD9 278, and SNOMED 162864005.

A.4 Ability to Work from Home (WFH)

A.4.1 Ability to WFH by Industry

Notation We index SOC (finer) occupations l ∈ {1 . . . , L}: used by SOC and OES. We

index 3-digit OCC (coarser) occupations j̃ ∈ {1, . . . , J̃}: these are the 2010 Census OCC codes

used by the 2018 ACS. We index 2-digit OCC occupations j ∈ {1, . . . , J}. We index O∗NET

occupation characteristics k = 1, . . . ,K. We index 2-digit NAICS codes i ∈ {1, . . . , I}

Data construction We then construct the likelihood that a 2 digit occupation is telework-

able (i.e. work-from-home), P (teleworkable|j) as follows

1. Use data from O*NET on 17 job characteristics. Each characteristic mkl ∈ [1, 5]

(a) Work Contexts: 1. Electronic Mail Use (reverse) 2. Outdoors, Exposed to

Weather; 3. Outdoors, Under Cover; 4. Deal With Physically Aggressive People;

5. Wear Specialized Protective or Safety Equipment such as Breathing Apparatus,

Safety Harness, Full Protection Suits, or Radiation Protection; 6. Wear Common

Protective or Safety Equipment such as Breathing Apparatus Safety Harness, Full
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Protection Suits, or Radiation Protection; 7. Spend Time Walking and Running; 8.

Exposed to Minor Burns, Cuts, Bites, or Stings; 9. Exposed to Disease or Infections.

(b) Work Activities: 1. Performing General Physical Activities; 2. Handling and Mov-

ing Objects; 3.Controlling Machines and Processes; 4. Operating Vehicles, Mecha-

nized Devices, or Equipment; 5. Performing for or Working Directly with the Public;

6. Inspecting Equipment, Structures, or Material; 7. Repairing and Maintaining

Electronic Equipment; 8. Repairing and Maintaining Mechanical Equipment

2. Use employment data nl from the national OES.

3. Collapse O*NET characteristics to the OCC level employment using employment weights

from the national OES

mj̃k :=
∑
l∈j

wlmkl

wl :=
nl∑
l′∈j̃ nl′

4. For each of 17 O*NET attributes, we convert each into binary variables m∗
j̃k
∈ {0, 1}

based on whether the raw measure mj̃k ≥ 3.5.

5. Following Dingel and Neiman (2020), we call a 3-digit occupation j̃ teleworkable if and

only if
∑

k∈K m
∗
j̃k

= 0. In other words, we say an occupation is not teleworkable if any

of the above work activities are important to the occupation.

teleworkablej̃ :=

1
∑

k∈K m
∗
j̃k

= 0

0
∑

k∈K m
∗
j̃k
> 0

6. We compute the share of a 2-digit occupation j that is teleworkable using national em-

ployment weights from the OES.

P (teleworkable|j) :=
∑
j̃∈j

teleworkablej̃ωj̃

ωj̃ :=
nj̃∑
j̃∈j nj̃

A.4.2 Ability to WFH by Industry and Age

We want to know, conditional on age a and industry i, the share of workers who can work-

from-home P (WFH|i, a). Our age bins of interest are [5, 17], [18, 49], [50, 64], 65+.

From the 2018 ACS 5-year, we compute employment in each occupation conditional on

industry and age P (j|i, a). From O*NET we know P (teleworkable|j), the likelihood that
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Table A.1: Teleworkable share by Occupation

Occupation Share teleworkable

Education 0.972
Legal 0.957
Computer/Math 0.916
Business/Financial 0.804
Architecture/Engineering 0.578
Science 0.544
Office/Admin 0.519
Management 0.474
Entertainment/Media 0.436
Sales 0.263
Personal care 0.104
Healthcare tech. 0.041
Healthcare supp. 0.013
Protection services 0.009
Production 0.006
Install/Maintenance/Repair 0.006
Farm/Fish/Forest 0
Material moving 0
Building maintenance 0
Construction/Extraction 0
Food prep. 0
Community/Social 0
Transport 0
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an individual in occupation j can work-from-home. With an independence assumption, this

allows us to compute the probability a worker can work-from-home conditional on age and

industry.

P (teleworkable|i, a) =
∑
j∈J

P (teleworkable|j)× P (j|i, a)

For example, notice that among workers in industry 11, Agriculture, Forestry, Fishing, and

Farming, younger workers are less likely to be employed in a teleworkable occupation than

older workers.

Figure A.3: Share of age x industry bins employed in teleworkable occupations

Note: This figure compares groups of 2 digit NAICS industries and age groups by employment in teleworkable
occupations. To construct this figure, we follow Dingel and Neiman (2020) and Mongey et. al. (2020) by labeling
occupations as non-teleworkable if they are sufficiently intensive in O∗NET activities that prevent the occupation from
being performed remotely. Occupations are teleworkable otherwise. We compute the probability of being employed
in a teleworkable occupation conditional on industry and age as P (teleworkable|i, a) =

∑
j∈J P (teleworkable|j) ×

P (j|i, a). We use data from the 2018 ACS 5-year and O∗NET.

B Calibration of Contagion Probability, Model Fit

The chosen definition of a contact, and the specific nature of the available synthetic population,

affect the magnitude and interpretation of the parameter governing contagion given contact.

In other words, our parameter βmt for the “probability of infection upon a Replica contact in

MSA m in day t” is to be interpreted as the “probability of infection upon face-to-face contact

in MSA m in day t” multiplied by the “probability of a face-to-face contact in MSA m in day

t upon a Replica contact in the same location-day”.

To account for this, we estimate the probability of contagion given contact via indirect

inference matching the model-predicted death series (using the parameters in Table 2) to

the cumulative deaths at daily frequency from Johns Hopkins University Center for Systems
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Science and Engineering.28 This is similar to Fernández-Villaverde and Jones (2020).

Currently, for each MSA m we estimate three parameters: the transmission rate β1
m apply-

ing to Phase 1 from t = 0 to t = 15, the transmission rate β2
m applying to Phases 2 and 3 for

t > 15, and the initial condition I0, corresponding to the number of people that are recently

infected and infectious (IA) in each type θ at t = 0.

We allow for the change in βmt from β1
m to β2

m to capture how a combination of endoge-

nous behavioral changes and regulatory guidelines reduce contagion given contact during a

pandemic. Typical examples include the use of masks, hand sanitizer, six feet distancing, etc.

We run a grid search for β1
m, β2

m, and I0, which minimizes the sum of squared error of log

death per 100 thousands people in the first 60 days of data. Then, we use t ∈ (61, 90) to test

out-of-sample fit. We drop a few days after the first death or the start of the sample to avoid

noise in reported deaths in the early period. Because the period in Phase 1 with reported death

is short, in this calibration exercise, we consider βmt = β1
m for t ≤ 25 for NYC and Chicago,

and βmt = β2
m for t ≤ 23 for Sacramento. The exact timing for this change in transmission

rate βmt is selected out of a range from 20 to 30 that generates reasonable out-of-sample fit

and sensible parameter values. The disease spread earlier in Sacramento, so an earlier change

of behavior is more reasonable. In addition, the death rate in Sacramento is low and noisy, so

we fix I0 = 1 and only search for β1
m and β2

m.

Table B.1: Estimated Transmission Rate βmt

City Contact Matrix β1
m β2

m

Chicago Replica 0.00335 0.00155
Sacramento Replica 0.00133 0.00040
NYC FRED 0.01859 0.00965

Note: The table shows estimated transmission rate β1
m and β2

m in each city. β1
m is applied to Phase 1 from t = 0 to

t = 15, and β2
m is applied to Phases 2 and 3 for t > 15

28Website: https://github.com/CSSEGISandData/COVID-19.
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Figure B.1: Comparing Model Simulated and Actual Daily Deaths

(a) Chicago
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(b) Sacramento
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(c) NYC

−
4

−
2

0
2

4
6

Lo
g 

D
ea

th
 P

er
 1

00
 0

00
 o

f P
op

ul
at

io
n

0 15 30 45 60 75 90

Note: Panels show results of the calibration exercise. The red solid line corresponds to the log of deaths per 100
thousand people from Johns Hopkins CSSE. The red dashed line is simulated from our model. The vertical grey line
indicates the start of lock down at t = 15, when we switch to the Essential Only (EO) contact matrix in our model.
The two black vertical lines correspond to the start and end of the sample used for calibration. We minimize sum of
squared errors.
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C Counterfactual Output

We list tabular and graphical outcomes predicted by our empirical framework for all combi-

nations of policies in Phase 2 and Phase 3. In terms of aggregate, cumulative outcomes we

have the following results for Chicago, Sacramento, and New York, respectively. Tables are

followed by a series of figures, where dashed lines will refer to the baseline case NP-EO-CR.

Table C.1: All Counterfactual Outcomes for Chicago (Replica-based)

Policy Sequence Cumulative Outcomes
Deaths Hospital ICU Employment Loss

Phase 1 Phase 2 Phase 3 (total) (total days) (total days) (1000s days)

No Policy No Policy No Policy 41251 1239783 209506 45577
No Policy Essential Only No Policy 26890 1014953 165319 79193
No Policy Alternate schedule No Policy 26834 994122 162417 56229
No Policy Work from home No Policy 27717 1013997 166966 34187
No Policy Isolate 60+ No Policy 26449 961727 159531 39161
No Policy Cautious Reopening No Policy 26590 952521 158317 36115
No Policy No Policy Essential Only 36104 1053941 171167 95279
No Policy Essential Only Essential Only 3693 120707 20216 115765
No Policy Alternate schedule Essential Only 5220 176991 29685 96264
No Policy Work from home Essential Only 5302 180315 30776 72743
No Policy Isolate 60+ Essential Only 6456 253201 43330 82615
No Policy Cautious Reopening Essential Only 8259 284919 48682 80521
No Policy No Policy Alternate schedule 36220 1062256 173922 69349
No Policy Essential Only Alternate schedule 4328 158005 26538 87822
No Policy Alternate schedule Alternate schedule 5580 193112 32509 67873
No Policy Work from home Alternate schedule 5828 207967 35652 45082
No Policy Isolate 60+ Alternate schedule 6913 267703 46117 55049
No Policy Cautious Reopening Alternate schedule 8478 295360 50816 53083
No Policy No Policy Work from home 36312 1086407 184955 43485
No Policy Essential Only Work from home 4595 168852 29224 59129
No Policy Alternate schedule Work from home 5891 212195 37056 39748
No Policy Work from home Work from home 5898 215612 39364 16199
No Policy Isolate 60+ Work from home 7129 287544 52693 27621
No Policy Cautious Reopening Work from home 8676 314921 57500 25852
No Policy No Policy Isolate 60+ 36280 1090019 185590 47946
No Policy Essential Only Isolate 60+ 5331 236176 40870 69828
No Policy Alternate schedule Isolate 60+ 6335 256044 44628 48031
No Policy Work from home Isolate 60+ 6662 276572 49821 26290
No Policy Isolate 60+ Isolate 60+ 7038 301088 55082 33644
No Policy Cautious Reopening Isolate 60+ 8794 330616 60234 31577
No Policy No Policy Cautious Reopening 36516 1094672 186387 44120
No Policy Essential Only Cautious Reopening 6765 267024 46099 66728
No Policy Alternate schedule Cautious Reopening 7355 279298 48572 44648
No Policy Work from home Cautious Reopening 7817 300993 53961 22995
No Policy Isolate 60+ Cautious Reopening 8349 325932 59274 30162
No Policy Cautious Reopening Cautious Reopening 9271 341811 62146 27796
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Table C.2: All Counterfactual Outcomes for Sacramento (Replica-based)

Policy Sequence Cumulative Outcomes
Deaths Hospital ICU Employment Loss

Phase 1 Phase 2 Phase 3 (total) (total days) (total days) (1000s days)

No Policy No Policy No Policy 1274 46867 7460 2010
No Policy Essential Only No Policy 902 36782 5899 13840
No Policy Alternate schedule No Policy 908 36945 5925 7673
No Policy Work from home No Policy 914 37127 5956 1506
No Policy Isolate 60+ No Policy 922 37380 5996 2345
No Policy Cautious Reopening No Policy 928 37517 6018 1542
No Policy No Policy Essential Only 636 22424 3707 16998
No Policy Essential Only Essential Only 398 15923 2691 28986
No Policy Alternate schedule Essential Only 400 16002 2705 22814
No Policy Work from home Essential Only 403 16088 2721 16642
No Policy Isolate 60+ Essential Only 406 16202 2740 17474
No Policy Cautious Reopening Essential Only 410 16277 2753 16667
No Policy No Policy Alternate schedule 641 22687 3753 9216
No Policy Essential Only Alternate schedule 401 16088 2720 21167
No Policy Alternate schedule Alternate schedule 403 16169 2734 14996
No Policy Work from home Alternate schedule 406 16257 2750 8826
No Policy Isolate 60+ Alternate schedule 409 16375 2770 9659
No Policy Cautious Reopening Alternate schedule 413 16452 2783 8853
No Policy No Policy Work from home 646 22961 3806 1445
No Policy Essential Only Work from home 404 16302 2760 13356
No Policy Alternate schedule Work from home 407 16388 2775 7187
No Policy Work from home Work from home 410 16482 2792 1018
No Policy Isolate 60+ Work from home 413 16594 2811 1853
No Policy Cautious Reopening Work from home 417 16671 2824 1048
No Policy No Policy Isolate 60+ 648 23358 3872 2514
No Policy Essential Only Isolate 60+ 405 16518 2796 14409
No Policy Alternate schedule Isolate 60+ 408 16605 2811 8239
No Policy Work from home Isolate 60+ 411 16699 2828 2071
No Policy Isolate 60+ Isolate 60+ 414 16829 2850 2908
No Policy Cautious Reopening Isolate 60+ 418 16910 2864 2103
No Policy No Policy Cautious Reopening 661 23675 3926 1505
No Policy Essential Only Cautious Reopening 411 16687 2825 13386
No Policy Alternate schedule Cautious Reopening 414 16776 2840 7217
No Policy Work from home Cautious Reopening 417 16873 2858 1049
No Policy Isolate 60+ Cautious Reopening 420 17007 2880 1885
No Policy Cautious Reopening Cautious Reopening 424 17091 2895 1081
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Table C.3: All Counterfactual Outcomes for New York (FRED-based)

Policy Sequence Cumulative Outcomes
Deaths Hospital ICU Employment Loss

Phase 1 Phase 2 Phase 3 (total) (total days) (total days) (1000s days)

No Policy No Policy No Policy 75580 2412392 449056 92641
No Policy Essential Only No Policy 70507 2384497 444773 174636
No Policy Alternate schedule No Policy 70180 2367081 442112 130080
No Policy Work from home No Policy 69378 2343724 438878 88581
No Policy Isolate 60+ No Policy 67554 2300829 432506 97260
No Policy Cautious Reopening No Policy 67617 2292707 431381 90802
No Policy No Policy Essential Only 75516 2410579 448787 207158
No Policy Essential Only Essential Only 30547 1067264 202093 258112
No Policy Alternate schedule Essential Only 36357 1287956 249352 222854
No Policy Work from home Essential Only 39147 1437947 296731 182785
No Policy Isolate 60+ Essential Only 40947 1550985 315685 201779
No Policy Cautious Reopening Essential Only 44154 1600061 323985 197515
No Policy No Policy Alternate schedule 75516 2410588 448790 149896
No Policy Essential Only Alternate schedule 32287 1162454 223004 203634
No Policy Alternate schedule Alternate schedule 37358 1341988 262246 168547
No Policy Work from home Alternate schedule 40030 1478616 304417 128869
No Policy Isolate 60+ Alternate schedule 41404 1564842 318830 146784
No Policy Cautious Reopening Alternate schedule 44296 1608217 326150 142437
No Policy No Policy Work from home 75516 2410603 448796 92634
No Policy Essential Only Work from home 34057 1301209 265798 149612
No Policy Alternate schedule Work from home 38471 1429428 290151 114563
No Policy Work from home Work from home 39848 1476895 306748 72612
No Policy Isolate 60+ Work from home 41685 1581897 323960 91878
No Policy Cautious Reopening Work from home 44496 1623061 330857 87471
No Policy No Policy Isolate 60+ 75516 2410609 448797 102091
No Policy Essential Only Isolate 60+ 35824 1426563 287545 169914
No Policy Alternate schedule Isolate 60+ 39133 1485593 299698 128990
No Policy Work from home Isolate 60+ 41121 1557386 319959 88835
No Policy Isolate 60+ Isolate 60+ 41399 1582603 324062 101806
No Policy Cautious Reopening Isolate 60+ 44528 1628035 331679 97191
No Policy No Policy Cautious Reopening 75517 2410615 448798 92635
No Policy Essential Only Cautious Reopening 38431 1476815 296186 163036
No Policy Alternate schedule Cautious Reopening 40530 1513626 304477 121170
No Policy Work from home Cautious Reopening 42473 1583275 324289 80961
No Policy Isolate 60+ Cautious Reopening 42686 1604187 327691 93333
No Policy Cautious Reopening Cautious Reopening 44706 1631531 332265 88207
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Figure C.1: NP-EO-CR Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Cautious Reopening in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.2: NP-EO-EO Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Essential Only in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.3: NP-EO-60+ Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Isolate 60+ in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left panel displays
the percent of individuals of the local population that are infected and symptomatic and/or detected, and the number
of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share of
workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to work
from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.4: NP-EO-WFH Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Work-from-Home if Possible in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top
left panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.5: NP-EO-AS Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Alternating Schedules in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.6: NP-CR-CR Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Cautious Reopening in Phase 2
and Cautious Reopening in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.7: NP-60+-60+ Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Isolate 60+ in Phase 2 and
Isolate 60+ in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top left panel displays
the percent of individuals of the local population that are infected and symptomatic and/or detected, and the number
of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share of
workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to work
from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.8: NP-WFH-WFH Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Work-from-Home if Possible in
Phase 2 and Work-from-Home if Possible in Phase 3 for the Chicago MSA, with contact matrices based on Replica
data. The top left panel displays the percent of individuals of the local population that are infected and symptomatic
and/or detected, and the number of deaths per 100,000s of population on the right vertical axis. The top right panel
corresponds plots the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the
workplace and unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.9: NP-AS-AS Policy Sequence in Chicago (Replica Based)

(a) Chicago, Epidemic Outcomes
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(b) Chicago, Employment Outcomes
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(c) Chicago, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Alternating Schedules in Phase
2 and Alternating Schedules in Phase 3 for the Chicago MSA, with contact matrices based on Replica data. The top
left panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.10: NP-EO-CR Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Cautious Reopening in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.11: NP-EO-EO Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Essential Only in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.12: NP-EO-60+ Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Isolate 60+ in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.13: NP-EO-WFH Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase
2 and Work-from-Home if Possible in Phase 3 for the Sacramento MSA, with contact matrices based on Replica
data. The top left panel displays the percent of individuals of the local population that are infected and symptomatic
and/or detected, and the number of deaths per 100,000s of population on the right vertical axis. The top right panel
corresponds plots the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the
workplace and unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.14: NP-EO-AS Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Alternating Schedules in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.15: NP-CR-CR Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Cautious Reopening in Phase 2
and Cautious Reopening in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top
left panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.16: NP-60+-60+ Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Isolate 60+ in Phase 2 and
Isolate 60+ in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.17: NP-WFH-WFH Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Work-from-Home if Possible
in Phase 2 and Work-from-Home if Possible in Phase 3 for the Sacramento MSA, with contact matrices based on
Replica data. The top left panel displays the percent of individuals of the local population that are infected and
symptomatic and/or detected, and the number of deaths per 100,000s of population on the right vertical axis. The top
right panel corresponds plots the share of workforce that is either active, inactive (due to quarantine, or not allowed
to access the workplace and unable to work from home), sick, or deceased. Dashed lines correspond to the baseline
case NP-EO-CR.
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Figure C.18: NP-AS-AS Policy Sequence in Sacramento (Replica Based)

(a) Sacramento, Epidemic Outcomes
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(b) Sacramento, Employment Outcomes
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(c) Sacramento, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Alternating Schedules in Phase 2
and Alternating Schedules in Phase 3 for the Sacramento MSA, with contact matrices based on Replica data. The top
left panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.19: NP-EO-CR Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Cautious Reopening in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.20: NP-EO-EO Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Essential Only in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.21: NP-EO-60+ Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2
and Isolate 60+ in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.22: NP-EO-WFH Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Work-from-Home if Possible in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top
left panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.23: NP-EO-AS Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Essential Only in Phase 2 and
Alternating Schedules in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.24: NP-CR-CR Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Cautious Reopening in Phase 2
and Cautious Reopening in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top left
panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.25: NP-60+-60+ Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Isolate 60+ in Phase 2 and
Isolate 60+ in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top left panel
displays the percent of individuals of the local population that are infected and symptomatic and/or detected, and the
number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots the share
of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and unable to
work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.26: NP-WFH-WFH Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Work-from-Home if Possible in
Phase 2 and Work-from-Home if Possible in Phase 3 for the New York MSA, with contact matrices based on FRED
data. The top left panel displays the percent of individuals of the local population that are infected and symptomatic
and/or detected, and the number of deaths per 100,000s of population on the right vertical axis. The top right panel
corresponds plots the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the
workplace and unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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Figure C.27: NP-AS-AS Policy Sequence in New York (FRED Based)

(a) New York, Epidemic Outcomes
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(b) New York, Employment Outcomes
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(c) New York, Healthcare Outcomes
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Note: The figure shows health and employment outcomes with No Policy in Phase 1, Alternating Schedules in Phase
2 and Alternating Schedules in Phase 3 for the New York MSA, with contact matrices based on FRED data. The top
left panel displays the percent of individuals of the local population that are infected and symptomatic and/or detected,
and the number of deaths per 100,000s of population on the right vertical axis. The top right panel corresponds plots
the share of workforce that is either active, inactive (due to quarantine, or not allowed to access the workplace and
unable to work from home), sick, or deceased. Dashed lines correspond to the baseline case NP-EO-CR.
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