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Abstract. As conveners that bring various stakeholders into the same physical space, firms
can powerfully influence the course of pandemics such as coronavirus disease 2019. Even
when operating under government orders and health guidelines, firms have considerable
discretion to keep their establishments open or closed during a pandemic. We examine the
role of social learning in the exercise of this discretion at the establishment level. In particu-
lar, we evaluate how the closure decisions of chain establishments, which are associated
with national brands, affect those of proximate, same-industry community establishments,
which are independently owned or managed. We conduct these analyses using cell phone
location tracking data on daily visits to 230,403 U.S.-based community establishments that
are colocated with chain establishments affiliatedwith 319 national brands. We disentangle
the effects of social learning from confounding factors by using an instrumental variables
strategy that relies on local variation in community establishments’ exposure to closure de-
cisions made by brands at the national level. Our results suggest that closing decisions of
community establishments are affected by the decisions made by chain establishments; a
community establishment is 3.5% more likely to be open on a given day if the proportion
of nearby open chain establishments increases by one standard deviation.

History:Accepted byOlav Sorenson, organizations.
Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.

2021.4033.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic
has highlighted the role of firms as conveners; despite
the proliferation of online communication, many busi-
ness models still rely on bringing employees, custom-
ers, and other stakeholders into the same physical
space. Research on infectious disease in general and
COVID-19 in particular has shown that physical colo-
cation can fuel disease transmission (Anderson et al.
2020). As a result, local and state governments have
implemented a wide range of policies and directives
to influence whether and how firms remain open or
closed during different phases of the COVID-19 pan-
demic (Benzell et al. 2020, Goolsbee et al. 2020).

For some firms, government closure directives have
left their managers or owners with no choice but to
shutter their doors; however, many other firms have
been able to exercise discretion in their closure deci-
sions. This discretion arises in part because many
counties and some states never explicitly ordered
firms to shut down, effectively passing responsibility

for responding to the COVID-19 pandemic to business
owners. Moreover, even when directives are in place,
many local and state governments lack adequate re-
sources to monitor and ensure full compliance of all
establishments in their jurisdiction. Finally, directives
issued by local and state governments are often am-
biguous, leaving business owners with latitude to in-
terpret the guidance as they see fit. Given that firms
have considerable leeway in making closure decisions
and that these choices can determine the shape of a
pandemic’s trajectory (Akbarpour et al. 2020, Chang
et al. 2021), we examine the social dynamics that un-
derpin these decisions.

In particular, we consider the role of interorganiza-
tional social learning in firms’ closure decisions during
the COVID-19 pandemic. In similar fashion to the intro-
duction of disruptive and ambiguous regulations (Kelly
2003, Baker et al. 2016), the COVID-19 pandemic and the
health directives it has spawned have created a context
in which firms have been forced to make closure deci-
sions under high levels of uncertainty—for example,
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about how their customers will react, how their deci-
sion will affect their financial position, whether their
employees will resist, and so on. During such times of
extreme uncertainty, firms may look to one another for
guidance on what behaviors to adopt (DiMaggio and
Powell 1983, Coleman 1990, Rogers 2010). One reason
for firms to emulate the behavior of other firms is that
they believe that these firms have superior information
about the appropriate response to uncertainty (Pfeffer
et al. 1976, Tushman and Romanelli 1983). However,
even if the information held by other firms is not obvi-
ously superior, the mere act of adopting the behavior of
others can reduce perceived uncertainty (Turner 2010,
Balla-Elliott et al. 2020).

We use the term social learning to describe the pro-
cess by which the behavior of one organization
prompts other organizations to adopt the same behav-
ior (Young 2009, DiMaggio and Garip 2012). Such
adoption may be the result of direct social influence of
the manager of one firm on the manager of another
firm. Yet, firms can also learn from the actions of other
firms in indirect ways—for example, a change in cus-
tomer behavior in response to the closings of other es-
tablishments may represent a signal to the focal firm
that the appropriate decision is to shutter its doors
too. Given the nature of the data available to us, we are
not able to pin down the specific channels, such as in-
terorganizational managerial influence, through which
this social learning occurs. We do, however, develop an
empirical strategy to demonstrate that closure decisions
are not made in isolation; when given the discretion,
closure decisions of firms tend to rely on the closure de-
cisions of geographically proximate competitors.

We consider two classes of establishments: (1) chain
establishments, which are either owned by or affiliated
with national brands and subject to more centrally de-
fined organizational policies and practices, and (2)
community establishments, which are independently
owned and managed. We examine the extent to which
community establishments’ closure decisions follow
those of nearby chain establishments in the same in-
dustry. Although prior work on interorganizational
learning has mostly focused on the transmission of in-
formation through formal and mostly cooperative net-
work connections, we examine how firms change their
behavior in response to decisions made by competi-
tors. Although we acknowledge that community es-
tablishments can also influence chain establishments’
closure decisions, our analytical focus is on the effect
of chain establishments on community establishments
because community establishments have considerably
more discretion in their closure decisions, and our em-
pirical strategy (described later in greater detail) can
only identify the latter effect.

We conducted this investigation using anonymized
cell phone location tracking data on daily visits to

230,403 U.S.-based community establishments that are
colocated with chain establishments affiliated with
319 national brands. Rigorously testing our proposi-
tion about social learning poses a key identification
challenge. Firms that are physically proximate do not
only respond to each other’s behavior but may also be
susceptible to shared contextual forces that affect all
firms in the vicinity. For example, a community and
chain establishment in the same neighborhood might
close not because one firm learns from the closure of
another but simply because both firms are faced with
the same county directives and the same local
COVID-19 infection rate. To begin to address these
empirical challenges, we estimate the impact of chain
closures on community establishments while control-
ling for fine-grained fixed effects at the level of the
county-date, industry-date, and zip code. These fixed
effects account for many potentially confounding fac-
tors such as daily changes in government policy, local
infection rates, changes in local demand, and time
trends in closure across different industries.

Although these fixed effects address many threats
to causal identification, they fall short of the ideal ex-
periment that would examine the impact of randomly
assigned chain establishment closures on proximate,
same-industry community establishments. To approx-
imate this ideal design, we leverage the fact that firms
with national scale (such as chains) often make cen-
tralized closure decisions that apply to all or a majori-
ty of their establishments without placing much
weight on any particular local conditions. We can
therefore evaluate our research question by compar-
ing the responses of otherwise similar establishments
that differ only in their local exposure to chain estab-
lishments with different national policies. Building on
this intuition and the literature on “shift-share” instru-
ments (Goldsmith-Pinkham et al. 2020, Derenoncourt
2019), we instrument for the closure decisions of a com-
munity establishment’s rival chain establishments in the
same industry and zip code by using the average num-
ber of closures of other establishments of the same chains
in all states except for the community establishment’s fo-
cal state. Our results suggest that a community establish-
ment is 3.5% more likely to be open on any given day if
the proportion of nearby open chain establishments in-
creases by one standard deviation. Taken at face value,
this effect is modest as a chain establishment’s closure af-
fects a single community establishment’s closure deci-
sion on a given day by only a small amount. That said,
when aggregated over a large number of community es-
tablishments over several weeks, the cumulative effect
we document becomes meaningful and consequential.
Finally, although our data do not allow us to isolate the
precise mechanism by which chain establishments affect
the behavior of community establishments, our results
provide robust evidence consistent with firms paying
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attention to competitors and imitating their behavior. In
the following sections, we introduce our data, discuss
our empirical strategy, and present our findings.

Data
We conduct our analyses using a data set released by
the SafeGraph COVID-19 Data Consortium.1 Safe-
Graph aggregates anonymized location data from
numerous applications on about 45 million mobile de-
vices to provide foot traffic patterns at physical
places.2 We focus on service-oriented points of interest
(POIs) such as retail shops, restaurants, movie thea-
ters, and fitness centers. For each POI, in addition to
its daily foot traffic, we observe its geographic loca-
tion, its North American Industry Classification Sys-
tem (NAICS) industry code, and the branded chain it
belongs to (if any). Online Appendix A1 describes fur-
ther details about the data.

Sample Construction
Our primary panel spans the period from March 1,
2020 to April 15, 2020—that is, just before the COVID-
19 pandemic led state and local governments to begin
issuing shelter-in-place directives and for six weeks
thereafter. Given that our focus is on establishments
that had discretion in their closure decisions, we elim-
inate ones that were likely deemed “essential,” which
we define as NAICS categories in which more than
70% of establishments were open during our observa-
tion period. This method identifies establishments in
industries such as gas stations and grocery stores,
which were widely considered essential, and provides
a principled basis to exclude them from our analyses.

The SafeGraph data indicate whether a given estab-
lishment is part of a branded chain as well as the
name of the brand, if applicable. We label establish-
ments associated with a national brand as chain estab-
lishments and those with no such association as

community establishments. We limit our focus to na-
tional brands that contained more than 50 establishments
and operated in at least 25 states. This strategy mini-
mizes the risk that closure decisions by chain estab-
lishments were driven by local COVID-19 conditions,
a critical condition for our instrumental variables
(IVs) strategy. In total, 319 brands (represented by
198,176 unique establishments) qualify as a national
brand. Our baseline sample is composed of community
establishments that had at least one chain establishment
in their three-digit NAICS industry code and zip code.
In total, our sample includes 10,368,135 establishment-
day observations for 230,403 establishments over 45
days, distributed across approximately 12,000 zip codes
across the United States. Online Appendix A2 contains
validation checks for the sample construction.

Variables
Table 1 summarizes our key variables. Our dependent
variable Open is an indicator for whether an establish-
ment was open or closed on a given day. Because the
SafeGraph data do not include such an indicator, we
developed an algorithm for this purpose. This algo-
rithm relies on past traffic in February 2020 (before
people began sheltering in place) and the rate of
change of visitors on a daily basis and makes adjust-
ments for very small and large places whose closures
can be harder to track. Online Appendix A3 describes
this algorithm, includes various validation checks,
and reports the robustness of our results to alternative
definitions of the Open variable.

Our key independent variable, Prop. Chain Est.
Open, measures the proportion of chain establish-
ments that are open in the same zip code and industry
as the focal community establishment. If a community
establishment has multiple rival chain establishments,
we take the weighted average of these establishments’
closing status. To account for the fact that there is like-
ly to be a lag in social learning, we consider the

Table 1. Summary Statistics

N Median Mean Standard deviation Min Max

Open 10,368,135 0 0.431 0.495 0 1
Prop. Branch Est. Opent–1 10,368,135 0.7 0.593 0.356 0 1
National Chain Opening Exposuret–1 10,368,135 0.609 0.611 0.253 0.000 1.000
Avg. February Traffic 230,403 12.562 17.185 25.032 7.032 7,014.948
Prop. Devices at Home 9,688,964 0.343 0.342 0.110 0.003 0.778
Shelter in Place 10,368,135 0 0.156 0.362 0 1

Notes. Open is a binary variable indicating whether the community establishment is open or not on a given day. Prop. Branch Est. Open is the ratio
of chain establishments that remain open to the total number of chain establishments in the same industry and zip code. National Chain Opening
Exposure is a weighted average of national opening rates of different chains that have establishments in the zip code area and are in the same in-
dustry as the community establishment. We include three control variables.Avg. February Traffic captures the average number of visitors of an es-
tablishment in the month prior to the outbreak of COVID-19. Prop. Devices at Homemeasures the ratio of the total number of devices at home and
the total number of devices in a census tract area. Shelter in Place is a binary variable indicating whether a shelter-in-place order is in effect in the
community establishment’s county. Avg. February Traffic is a cross-sectional variable measured in February. The other variables change over
time, with Prop. Devices at Homemissing some observations. If our models include this variable, we drop the missing cases.

de Vaan et al.: Community Establishments’ Closures Follow Those of Nearby Chains
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previous day’s proportion for the focal day’s closure
decision. On average, about 59% of an establishment’s
chain counterparts in the same industry and zip code
were open and there is significant dispersion around
the mean. The mean also reflects data from the first
two weeks of March when shelter-in-place orders
were yet to be issued across the United States.

Our instrumental variable strategy depends on a re-
liable instrument for Prop. Chain Est. Open, which we
label National Chain Opening Exposure. For a given
brand-date-state combination, we computed the pro-
portion of stores that were closed across the country
while excluding establishments in the focal state.
Then, we calculated the weighted average of this sta-
tistic for every community establishment based on the
brands in the zip code and industry of the community
establishment. This metric provides a measure of the
extent to which rival chains of the focal community
establishment enacted company-wide corporate direc-
tives to shutter their doors or remain open. We explain
this instrument in further detail after we describe other
data and summary statistics.

Our models include various control variables. We
approximate establishment size by calculating the av-
erage number of visitors in February, Avg. February
Traffic. The median establishment has about 13 visitors

on a given day in February. Note that this number is
an order of magnitude lower than the true number of
visitors because SafeGraph’s coverage is limited to
only about one-sixth the number of devices of the U.S.
population. Prop. Devices at Home measures the num-
ber of devices that, according to SafeGraph, do not
move out of their home location on a given date. This
is a useful proxy for the extent to which individuals in
a given area decided to limit their mobility and helps
control for demand factors that might affect closure
decisions (Allcott et al. 2020, Chiou and Tucker 2020).
Finally, we define an indicator variable, Shelter in
Place, that accounts for whether “shelter-in-place” or-
ders were in effect at the county level for a given zip
code on a given day (based on data from the National
Association of Counties).3

Empirical Strategy and Results
Motivating Example
To provide greater intuition for our empirical strate-
gy, we begin with a motivating example. Figure 1
shows the closing status of chain and community es-
tablishments in the fitness center industry in two
neighboring zip codes in Collin County, Texas on
March 25, 2020. As indicated by the star icons, the zip
code in the left panel, 75150, had a closed chain

Figure 1. (Color online) Illustration of Our Research Design

Notes. This figure provides an illustration of our research design using two neighboring zip codes in Collin County, Texas—75150 in the left pan-
el and 75409 in the right panel. This figure plots all establishments belonging to the NAICS code 713940 (Fitness and Recreational Sports Centers)
in these two zip codes in our data. Chain establishments are represented by stars, whereas community establishments are indicated by circles. Es-
tablishments colored in red are closed, whereas establishments in green are open onMarch 25, 2020 according to our algorithm. As is clear from
this figure, the chain establishment in the left panel (which is Brand A) has closed, whereas the chain establishment in the right panel (Brand B)
has not. In this example, 78% of community establishments in the left panel are closed, whereas only 66% of community establishments in the
right panel are closed on this given day.
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establishment (Orange Theory), whereas the zip code
in the right panel, 75409, had a chain establishment
(Anytime Fitness) that was still open. These closing
behaviors were consistent with the broad closure pat-
tern of other establishments in these two chains; as of
March 25, 78% of Orange Theory establishments had
closed, whereas 66% of Anytime Fitness establish-
ments had closed according to our data. As depicted
in the figure and consistent with our theory and em-
pirical strategy, all six community establishments in
the vicinity of the closed Orange Theory (Brand A) es-
tablishment were closed, whereas three of the five
community establishments near the open Anytime
Fitness were also open. Moreover, any corporate di-
rectives issued by Orange Theory or Anytime Fitness
at this time were unlikely to be influenced by the spe-
cific local conditions in Collin County, which is the
main assumption for our exclusion restriction. We
turn next to examining whether the pattern observed
in this example generalizes across industries and
locations.

Identifying a Social Learning Effect
Prior literature on statistically identifying social learn-
ing effects demonstrates that mere similarity in behav-
ior between connected actors does not necessarily
imply a causal transmission process (Shalizi and
Thomas 2011, Azoulay et al. 2017). In the example, we
proposed that community establishments in zip code
75150 might be more likely to be closed than those in
zip code 75409 because of differential decisions made
by their nearby rival chain establishments. Yet, other
factors such as differences in local neighborhood
guidelines, local COVID-19 cases, the demographic
composition of residents, and local media coverage
could produce a similar pattern.

More formally, consider a model in which a commu-
nity establishment i in industry n and zip code z makes
a decision to stay open at time, t, represented by the
indicator Openinzt (where zero indicates closed and one
indicates open). We are interested in the relationship be-
tween this variable and Prop:Chain Est: Opennz(t−1), the
proportion of chain establishments in industry, n, and
zip code, z, that are open at time, (t− 1). In our exam-
ple, this variable equals zero in zip code 75150 and one
in zip code 75409.

Inspecting the simple correlation between Openinzt
and Prop:Chain Est: Opennz(t−1) would be misleading
because of the various confounds noted before. To
partially address this issue, in our most stringent spec-
ification, we include nonparametric time trends in the
form of county by date fixed effects ηzt. The county by
date fixed effects account for a range of confounding
factors including daily changes in infections and any
county-level social distancing guidelines as well as
awareness of the importance of social distancing

across time. Further, because national patterns of re-
sponse to the pandemic likely varied by industry and
over time, our most stringent specification also in-
cludes industry-date fixed effects γnt. Finally, to con-
trol for time-invariant differences across zip codes
within a county—for example, differences in local in-
come, race, and political orientation (Allcott et al.
2020)—we include zip code fixed effects θz.

Beyond the sources of variation accounted for
by our fixed effects, we anticipate that formal shelter-
in-place orders at the local level also affect local estab-
lishments’ closure decisions. In models without tem-
poral fixed effects, we therefore include an indicator
variable, Shelter In Placezt, which is set to one if there is
a shelter-in-place policy at time, t, in the county to which
a zip code, z, belongs. In models with time fixed effects,
this variable is subsumed by the fixed effect. Similarly,
given that establishment size might be associated with
different incentives to remain open or closed, we include
a proxy for size: Avg:February Foot Traffici. Finally, to
account for local, time-varying differences in customer
mobility, we include the control, Prop:Devices At Homezt,
which indicates the proportion of customers in the zip
code, z, who are following guidelines to limit their mobili-
ty by not leaving their residence on date, t. Thus, our
most stringent Ordinary Least Squares (OLS) specifica-
tion can be summarized as follows:

Openinzt � β0+β1 × Prop:Chain Est:Opennz(t−1)
+β2 ×Avg: Feb Foot Traffici
+β3 × Prop:Devices at Homezt+γnt+ηzt+θz+ ε

(1)

Instrumental Variables Specification
Despite the inclusion of control variables and various
fixed effects, it is still possible that our OLS estimates
of the coefficient of interest, β1, are biased because
there are likely to be other omitted variables that we
cannot explicitly control for. For example, health-con-
scious customers in a particular area might mobilize
to urge both chain and community establishments in
a particular industry to close. To account for such
possibilities, we developed an IV identification strate-
gy. Any potential instrument, Z, for our endogenous
variable, Prop:Chain Est: Opennz(t−1), must satisfy two
conditions. First, it must be sufficiently correlated
with Prop:Chain Est: Opennz(t−1)—that is, it should
significantly affect the probability that a chain estab-
lishment temporarily closes. Second, the IV must sat-
isfy the exclusion restriction; it must affect a commu-
nity establishment’s decision to close exclusively via
its influence on closing the local branch of the na-
tional chain. Formally, the instrument requires that
cov(Openinzt,Z)≠ 0 and cov(Z,ε) � 0.

de Vaan et al.: Community Establishments’ Closures Follow Those of Nearby Chains
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Our instrument for Prop:Chain Est: Opennz(t−1) is
NationalChain Opening Exposurenz(t−1), which we de-
note by Znz(t−1) for brevity. To understand how Znz(t−1)
is calculated, consider the example in Figure 1. For
each industry-zip code pair, we calculate the propor-
tion of chain establishments outside of the state of
Texas that are open on the date, (t− 1). Orange Theory
(left panel) has 825 establishments outside Texas, of
which 181 are open. Meanwhile, Anytime Fitness
(right panel) has 1,565 establishments outside Texas,
of which 526 are open. Because only one chain is ac-
tive in both cases, the instrument, Znz(t−1), is simply
calculated as the proportion of establishments open
outside Texas. In Figure 1, this statistic is 0.22 for the
zip code 75150 and 0.34 for the zip code 75409. In the
case of multiple chains, the instrument, Znz(t−1), is cal-
culated as the weighted average of this statistic across
different chains.

Although we cannot fully rule out violations of the
exclusion restriction, we can evaluate whether corpo-
rate closure decisions were orthogonal to observable
local market conditions. Doing so allows us to deter-
mine whether the common exposure of chain and
community establishments to local business or disease
conditions interferes with the instrument and acts as a
confounder in our models. If that is the case, it is pos-
sible that we are detecting a “canary in the coal mine”

effect, where chain establishments are responding
more rapidly to changing local business and disease
conditions, perhaps because they have better resour-
ces and are more sensitive to legal risk. Note that in
this scenario, chain and community establishments
exhibit similar closing behavior that is not driven by
social learning but by common exposure to local busi-
ness or disease conditions. We design a series of anal-
yses aimed at determining whether the most plausible
common exposure effects drive our results. We in-
clude these results in Online Appendix B. Overall, the
results of these robustness checks further corroborate
our main finding.

Summary Statistics
Table 1 provides descriptive statistics for our main
variables of interest. The table shows that the uncon-
ditional probability of a community establishment be-
ing open in our sample period (i.e., March 2nd
through April 15th) is 0.431. Note that this mean in-
cludes establishment days before shutdowns began
around March 15. The table also shows that our main
independent variable, Prop. Branch Est. Open, ranges
between 0 and 1, with a mean of 0.59. The mean of
our instrument National Chain Opening Exposure is
slightly higher at 0.61. Finally, the descriptive statistics

Table 2. OLS Regressions of Community Establishments That Are Open

OLS estimates

Open

Model 1 Model 2 Model 3 Model 4

Prop. Branch Est. Opent–1 0.293*** 0.180*** 0.060*** 0.037***
(0.011) (0.006) (0.003) (0.002)

Avg. February Traffic 0.001 0.001 0.001 0.001*
(0.001) (0.001) (0.001) (0.001)

Prop. Devices at Home −1.275*** −1.993*** −0.351*** −0.168***
(0.068) (0.040) (0.027) (0.026)

Shelter in Place −0.042*** −0.038***
(0.011) (0.007)

(Intercept) 0.678***
(0.030)

Fixed effect NAICS No Yes (25) Yes (25) No
Fixed effect zip No Yes (11,879) Yes (11,879) Yes (11,879)
Fixed effect date No No Yes (45) No
Fixed effect NAICS × date No No No Yes (1,125)
Fixed effect county × date No No No Yes (70,738)
Observations 9,688,964 9,688,964 9,688,964 9,688,964
R2 0.195 0.263 0.302 0.300

Notes. Establishment-date–level observations. The sample includes all establishment-dates from March 2, 2020 to
April 15, 2020 for 230,403 community establishments that have at least one national brand competitor in their zip
code. The main dependent variable Open 0/1 � 1 if a place is deemed open according to our measure derived from
SafeGraph cell phone visit data. Prop. Chain Est. Open is the percentage of same-industry zip code chain establish-
ments that are open on the same date. Avg. February Traffic denotes average visitors in February 2020. Prop. Devices
at Home indicates number of devices that sheltered in place in a given zip code by not leaving their residence even
once. Shelter in Place 0/1 � 1 if a zip code has a formal shelter-in-place regulation asking establishments to shut
down. The numbers of fixed effects estimated are included in parentheses following the fixed effects indicators.
*p< 0.05; ***p< 0.001.

de Vaan et al.: Community Establishments’ Closures Follow Those of Nearby Chains
Management Science, 2021, vol. 67, no. 7, pp. 4446–4454, © 2021 INFORMS 4451

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

26
07

:f
14

0:
80

0:
1:

:2
16

a]
 o

n 
30

 A
ug

us
t 2

02
3,

 a
t 1

6:
50

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



for our three control variables, Prop. Devices at Home,
and Shelter in Place are included.

Empirical Estimates
In Table 2, we report results of OLS regressions. As
stated before, we lag the key independent variable by
one day (results are robust to longer lags); the proba-
bility of a community establishment being open at
day t is a function of Prop. Branch Est. Open at day t –
1. Additionally, because the variation we observe
might be clustered within spatial units, we adjust the
standard errors for clustering at the county level.

Model 1 presents the association between the proba-
bility of a community establishment being open and the
proportion of chain establishments that are open in the
presence of key controls (but without fixed effects).
Model 2 adds industry and zip code fixed effects, and
Model 3 includes almost 12,000 zip fixed effects as well.
Model 4, our most stringent specification, includes zip
fixed effects, but now, it also includes industry- and
county-level time trend (NAICS by date and county by
date) fixed effects rather than a common time trend.
The inclusion of fixed effects reduces the coefficient esti-
mate as compared with Model 1 that includes only the
controls, demonstrating their importance in this setting.
The range of effect sizes reported in Models 2–4 sug-
gests that a one-standard deviation increase in the pro-
portion of chain establishments (0.356) that are open

leads to between a 1.3% and 6.4% increase in the proba-
bility of a community establishment being open on a
given day. To put this number into perspective, it is im-
portant to note that the effect is estimated at the estab-
lishment-day level; even though the effect is modest, it
has the potential to accumulate across establishments
and over time.4

Next, we move to our IV estimates, which are re-
ported in Table 3. The first stage is positive and signif-
icant, suggesting that our instrument is predictive of a
chain establishment temporarily closing. Also, the
first-stage F statistic is about 1,250, indicating that our
instrument is sufficiently powered (Lee et al. 2020).
The IV estimates are broadly consistent with our OLS
estimates in the sense that they show a positive and
significant effect of chain establishments’ closure deci-
sions on those of community establishments. If any-
thing, the IV estimates suggest a slightly greater effect
size than revealed by the OLS specifications. The IV
estimate in Model 6 suggests that a community estab-
lishment is 3.5% more likely to be open if the propor-
tion of open chain establishments increases by one
standard deviation.

Discussion
The goal of this article has been to identify the role of
social learning in the closure decisions of community
establishments during the COVID-19 pandemic. We

Table 3. IV Regressions of Community Establishments That Are Open

IV estimates

Model 5 Model 6

First stage IV First stage IV

Prop. Branch Est. Opent–1 0.113*** 0.099***
(0.006) (0.008)

National Chain Opening Exposuret–1 0.961*** 0.972***
(0.013) (0.015)

Avg. February Traffic 0.000 0.001 0.000 0.001
(0.000) (0.001) (0.000) (0.001)

Prop. Devices at Home −0.232*** −0.332*** −0.004 −0.165***
(0.032) (0.026) (0.024) (0.024)

Fixed effect NAICS Yes (25) Yes (25) No No
Fixed effect zip Yes (11,879) Yes (11,879) Yes (11,879) Yes (11,879)
Fixed effect date Yes (45) Yes (45) No No
Fixed effect NAICS × date No No Yes (1,125) Yes (1,125)
Fixed effect County × date No No Yes (70,738) Yes (70,738)
Observations 9,688,964 9,688,964 9,688,964 9,688,964

Notes. Establishment-date–level observations. The sample includes all establishment-dates from March 2, 2020 to April 15,
2020 for 230,403 community establishments that have at least one national brand competitor in their zip code. The main de-
pendent variable Open 0/1 � 1 if a place is deemed open according to our measure derived from SafeGraph cell phone visit
data. Prop. Chain Est. Open is the percentage of same-industry zip code chain establishments that are open on the same date.
Avg. February Traffic denotes average visitors in February 2020. Prop. Devices at Home indicates number of devices that shel-
tered in place in a given zip code by not leaving their residence even once. Shelter in Place 0/1 � 1 if a zip code has a formal
shelter-in-place regulation asking establishments to shut down.National Chain Opening Exposure indicates the predicted likeli-
hood of competitor chain establishments being open as measured by national closing patterns. The numbers of fixed effects
estimated are included in parentheses following the fixed effects indicators.
***p< 0.001.
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argued that these establishments will learn about
whether to remain open or to instead close from their
proximate chain establishment competitors. Using
granular, time-varying data on individuals’ visits to a
national population of establishments in the United
States and a novel instrumental variables strategy, we
found support for this proposition.

Findings from this study contribute to our under-
standing of interorganizational social learning. Prior
work on interorganizational social learning has focused
on the transmission of information through formal and
mostly cooperative network connections—for example,
in the form of joint ventures, alliances, and interlocking
boards (Davis 1991, Powell et al. 1996). In contrast, we
highlight a setting in which firms learn from and adopt
the behaviors of geographically proximate competitors.
In other words, economically relevant information can
be transmitted between organizations in the absence of
a formal network connection and even when the two
organizations are fierce competitors.

This paper also makes noteworthy methodological
contributions. Our paper is one of the first to apply a
shift-share instrument to the study of interorganization-
al social learning. Many previously used estimation
strategies cannot account for unobserved, time-varying
contextual factors that might affect organizational be-
havior and that might otherwise masquerade as social
learning. The instrument we introduce can be readily
extended to study other ways in which centralized deci-
sions of chain establishments might shape the behavior
of proximate community establishments. Second, we
develop and validate a methodology for determining,
based on location tracking data, when a given estab-
lishment is open or closed. Given the ubiquity of loca-
tion tracking data, an approach such as ours can be
readily extended to studying other forms of interorga-
nizational social learning—for example, how choices
about hours of operation might cascade from one orga-
nization to others.

Our findings also have implications for the design
of government policies to influence firm behavior in
the management of pandemics such as COVID-19.
Perhaps most importantly, this paper shows that
when government directives and health guidelines
are ambiguous, firms will look for other information
to guide their decision making. Obviously, such ambi-
guity may have been intentional if local governments
believe that firms are well positioned to make these
important decisions. However, if one assumes that
this is not the case, policy makers and local govern-
ments should consider the consequences of a lack of
clarity and precision in their directives.

These contributions notwithstanding, the study also
has certain limitations. First, our empirical strategy fo-
cuses on social learning from chain establishments to
community establishments. We recognize, however,

that community establishments’ closure decisions
might also have a reciprocal impact on the closure de-
cisions of chain establishments. At the moment, we do
not have a comparable instrumental variable strategy
to help pin down this effect. Second, as rich as the lo-
cation tracking data from SafeGraph are, they are ill
suited to pinning down the mechanisms that underlie
the patterns we observe (e.g., the exact nature of social
information that firms acquire from competitors).

In sum, this study documents that community estab-
lishments are prone to following suit in responding to
the closure decisions of chain establishments. Under-
standing organizational decision making during tumul-
tuous times such as a global pandemic can help local
governments design more effective policies to positive-
ly influence the behavior of local establishments.
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Endnotes
1 See https://www.safegraph.com/covid-19-data-consortium.
2 Information from establishment census block group observations
with fewer than five devices is excluded for privacy reasons.
3 See https://tinyurl.com/y6sdlgfd.
4 Another way to interpret the effect size is to consider the coeffi-
cient of the Shelter in Place variable. A change to a shelter-in-place
order is associated with a 3.8% reduction in the likelihood of a com-
munity establishment being open on a given day.
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